【题目】如图,△ACB中,∠ACB=90°,在AB的同侧分别作正△ACD、正△ABE和正△BCF. 若四边形CDEF的周长是24,面积是17,则AB的长是_______.
【答案】2
【解析】
依据全等三角形的性质,即可得到DE=CB=CF,EF=AC=DC,进而得出四边形CDEF是平行四边形,再根据∠CFG=30°,即可得到CG=CF,进而根据四边形CDEF的周长和面积,得到AC与BC的和与积,再利用勾股定理及完全平方公式的变形即可解答.
如图,过C作CG⊥EF于G,设BC=a,AC=b,
∵△ACD,△ABE,△BCF都是等边三角形,
∴AD=AC,AE=AB,∠DAC=∠EAB=60°,
∴∠DAE=∠CAB,
∴△ADE≌△ACB,
∴DE=CB=CF=a,
同理可得,EF=AC=DC=b,
∴四边形CDEF是平行四边形,
∵∠ACD=∠BCF=60°,∠ACB=90°,
∴∠DCF=150°,
∴∠CFG=30°,
∴CG= CF
∵四边形CDEF的周长是24,面积是17,
∴a+b=12,ab=34
∵∠ACB=90°
∴AB2=
∴AB=2
科目:初中数学 来源: 题型:
【题目】如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,在矩形ABCD中,AB=2cm,BC=6cm,点C和点M重合,点B,C(M),N在同一直线上若Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2,则y与x的大致图象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的周长为22m,对角线AC、BD交于点O,过点O与AC垂直的直线交边AD于点E,则△CDE的周长为( )
A. 8cmB. 9cmC. 10cmD. 11cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B在x轴的上方,∠AOB=90°,OA、OB分别与函数、的图象交于A、B两点,以OA、OB为邻边作矩形AOBC.当点C在y轴上时,分别过点A和点B作AE⊥x轴,BF⊥x轴,垂足分别为E、F,则=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,测得落在地面上的影长BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度AB为____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,-1)、B(,n)两点,点C的坐标为(0,2),过点C的直线l与x轴平行.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,等边△AOB的边长为10,点C在边OA上,点D在边AB上,且OC=3BD.反比例函数y=(k≠0)的图象恰好经过C、D两点,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数 y=的图象如图所示,则二次函数 y =ax 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com