【题目】如图是小花在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小花身高1.5米,当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.
【答案】风筝原来的高度为米.
【解析】
设AF=x,则BF=AB+AF=9+x,在Rt△BEF中求得AD=BE=,由cos∠CAD=,然后建立关于x的方程,解之求得x的值,确定AD的长,最后由CD= A Dsin∠CAD即可求出C1D.
解:设AF=x,则BF=AB+AF=9+x,
在Rt△BEF中,BE=,
由题意知AD=BE=18+x,
∵CF=10,
∴AC=AF+CF=10+x,
由cos∠CAD=可得 ,
解得:x=3 +2,
则AD=18+(3+2)=24+2,
∴CD=ADsin∠CAD=(24+2)×=12+,
则C1D=CD+C1C=12++=+;
答:风筝原来的高度C1D为(+)米
科目:初中数学 来源: 题型:
【题目】远承中学为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.
请根据所给信息解答下列问题:
(1)求本次抽取的学生人数;
(2)补全条形图,在扇形统计图中的横线上填上正确的数值;
(3)该校有5000名学生,请你估计该校喜爱娱乐节目的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,半圆的直径.点与点重合,半圆以的速度从左向右移动,在运动过程中,点、始终在所在的直线上.设运动时间为,半圆与的重叠部分的面积为.
(1)当时,设点是半圆上一点,点是线段上一点,则的最大值为_________;的最小值为________.
(2)在平移过程中,当点与的中点重合时,求半圆与重叠部分的面积;
(3)当为何值时,半圆与的边所在的直线相切?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(8,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤12),求S与t的函数表达式;
(3)在(2)的条件下,t为何值时,S最大?并求出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
(1)求抛物线C1的表达式;
(2)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
(3)在(2)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.
(1)求证:AC平分∠FAB;
(2)若AE=1,CE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 AB ,则点 B 的对应点 B′的坐标是( )
A.(-4 , 1)B.( -1, 2)C.(4 ,- 1)D.(1 ,- 2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,D为边AC的延长线上一点(),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.
(1)依题意补全图形;
(2)求证:;
(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com