【题目】在平面直角坐标系中,直线分别与x轴,y轴交于点,点C是第一象限内的一点,且,抛物线经过两点,与x轴的另一交点为D.
(1)求此抛物线的解析式;
(2)判断直线与的位置关系,并证明你的结论;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
【答案】(1)二次函数的解析式为;(2)AB∥CD,证明见解析;(3)点N的坐标分别为(,1),(,1),(,-1),(-1).
【解析】
(1)求得点C的坐标,应用待定系数法即可求得抛物线的解析式.
(2)根据勾股定理求出AC,CD,AD的长,从而根据勾股定理逆定理得到△ACD为直角三角形,∠ACD=90°,由∠BAC=90°,得出AB∥CD.
(3)由题意可知,要使得以A,B,M,N四点构成的四边形为平行四边形,只需要点N到x轴的距离与点B到x轴的距离相等.据此列出方程求解即可.
解:(1)由题意可求点A(2,0),点B(0,1).
过点C作CE⊥x轴,易证△AOB≌△ECA.
∴ OA=CE=2,OB=AE=1.
∴ 点C的坐标为(3,2).
将点A(2,0),点C(3,2)代入,
得,,解得.
∴二次函数的解析式为.
(2)AB∥CD.证明如下:
令,解得.
∴ D点坐标为(7,0).
可求.
∴△ACD为直角三角形,∠ACD=90°.
又∵∠BAC=90°,
∴ AB∥CD.
(3)如图,由题意可知,要使得以A,B,M,N四点构成的四边形为平行四边形,只需要点N到x轴的距离与点B到x轴的距离相等.
∵ B点坐标为(0,1),
∴ 点N到x轴的距离等于1.
可得和.
解这两个方程得.
∴点N的坐标分别为(,1),(,1),(,-1),(,-1).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点M在BA的延长线上.
(1)按下列要求作图,并在图中标明相应的字母.(保留作图痕迹)
①作∠MAC的平分线AN;
②作AC的中点O,连结BO,并延长BO交AN于点D,连结CD;
(2)在(1)的条件下,判断四边形ABCD的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE、OE.
(1)求证:DE是⊙O的切线;
(2)填空:
①当∠CAB= 时,四边形AOED是平行四边形;
②连接OD,在①的条件下探索四边形OBED的形状为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.
(1)求证:△AEB≌△CFD;
(2)若四边形EBFD是菱形,求∠ABD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数,有下列结论:①其图象与x轴一定相交;②若,函数在时,y随x的增大而减小;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中所有正确的结论是___.(填写正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com