如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
B【考点】作图—基本作图;线段垂直平分线的性质.
【分析】(1)由作图可得出直线ED为线段BC的中垂线,即可得出①ED⊥BC正确;
(2)由直角三角形斜边中线相等可得AE=BE,∠A=∠EBA;故②正确;
(3)利用假设法证明得出△ABE为等边三角形与△ABE为等腰三角形矛盾.故③错误;
(4)利用ED是△ABC的中位线可得ED=AB,故④正确.
【解答】解:由题意可得直线ED为线段BC的中垂线,
∴ED⊥BC;故①正确;
∵∠ABC=90°,ED⊥BC;
∴DE∥AB,
∵点D是BC边的中点,
∴点E为线段AC的中点,
∴AE=BE,
∴∠A=∠EBA;故②正确;
如果EB平分∠AED;
∵∠A=∠EBA,DE∥AB,
∴∠A=∠EBA=∠AEB,
∴△ABE为等边三角形.
∵△ABE为等腰三角形.故③错误;
∵点D是BC边的中点,点E为线段AC的中点,
∴ED是△ABC的中位线,
∴ED=AB,故④正确.
故选:B.
【点评】本题主要考查了基本作图及线段的垂直平分线,解题的关键是确定ED是为线段BC的中垂线.
科目:初中数学 来源: 题型:
如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是( )
A. absinα B.absinα C.abcosα D. abcosα
查看答案和解析>>
科目:初中数学 来源: 题型:
广场内有一块边长为2a m的正方形草坪,同一规划后,南北方向要缩短3 m,东西方向要加长3 m,则改造后的长方形草坪的面积与原来的面积相比,是变大了还是变小了,通过计算说明。
查看答案和解析>>
科目:初中数学 来源: 题型:
下列各式中,运算结果是a2-16b2的是( )
A. (-4b+a)(-4b-a);B. (4b-a)(-4b-a); C. (-4b+a)(4b-a); D. (4b+a)(4b-a)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com