精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.若直线l的极坐标方程为 ,曲线C的极坐标方程为:ρsin2θ=cosθ,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1 . (Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知直线l与曲线C1交于A,B两点,点P(2,0),求|PA|+|PB|的值.

【答案】解:(I)曲线C的极坐标方程为:ρsin2θ=cosθ,即ρ2sin2θ=ρcosθ,化为直角坐标方程:y2=x. 将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1:y2=2(x﹣1).
(II)直线l的极坐标方程为 ,展开可得: ρ(cosθ+sinθ)﹣2=0,可得直角坐标方程:x+y﹣2=0.
可得参数方程: (t为参数).
代入曲线C1的直角坐标方程可得:t2+2 t﹣4=0.
解得t1+t2=﹣2 ,t1t2=﹣4..
∴|PA|+|PB|=|t1﹣t2|= = =
【解析】(I)曲线C的极坐标方程为:ρsin2θ=cosθ,即ρ2sin2θ=ρcosθ,化为直角坐标方程:y2=x,通过变换可得曲线C1的方程. (II)直线l的极坐标方程为 ,展开可得: ρ(cosθ+sinθ)﹣2=0,利用互化公式可得直角坐标方程.可得参数方程: (t为参数),代入曲线C1的直角坐标方程可得:t2+2 t﹣4=0,利用|PA|+|PB|=|t1﹣t2|= 即可得出.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

售价x(元/千克)

50

60

70

80

销售量y(千克)

100

90

80

70


(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2 (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}前n项和Tn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数 ,则f(x)在[0,k]的最大值h(k)=(
A.2ln2﹣2﹣(ln2)3
B.﹣1
C.2ln2﹣2﹣(ln2)2k
D.(k﹣1)ek﹣k3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为16π,则弦AB的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张直角三角形纸片ABC,∠C=90°,AB=24,tanB= (如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为

查看答案和解析>>

同步练习册答案