ÈçÏÂ±í£¬·½³Ì1£¬·½³Ì2£¬·½³Ì3¡­Êǰ´ÕÕÒ»¶¨¹æÂÉÅÅÁеÄÒ»Áз½³Ì£®
£¨1£©½â·½³Ì2£¬°ÑËüµÄ½âÌîÔÚ±íÄÚ¿Õ°×´¦£®       
ÐòºÅ ·½³Ì ·½³ÌµÄ½â 
 1
1+x
2x
=
2
x
 
 x=3
 2
1+x
2x
=
3
x
 
 
 3
1+x
2x
=
4
x
 
 x=7
£¨2£©ÒÑÖª·½³Ì
1+x
2x
=
a
x
µÄ½âÊÇx=11£¬ÇóaµÄÖµ£»¸Ã·½³ÌÔÚ±íÄÚµÄÒ»Áз½³ÌÖÐÂð£¿Èç¹ûÔÚ£¬Êǵڼ¸¸ö·½³Ì£¿
£¨3£©Ð´³ö±íÄÚÕâÁз½³ÌÖеĵÚn¸ö·½³ÌºÍËüµÄ½â£¬²¢ÑéÖ¤Õâ¸ö½âÊʺϵÚn¸ö·½³Ì£®
¿¼µã£º·Öʽ·½³ÌµÄ½â
רÌ⣺¹æÂÉÐÍ
·ÖÎö£º£¨1£©Á½±ßͬʱ³Ë×î¼ò¹«·Öĸ2x£¬¿É°Ñ·Öʽ·½³Ì»¯ÎªÕûʽ·½³ÌÀ´½â´ð£»
£¨2£©ÏȽ«x=11´úÈë·½³Ì
1+x
2x
=
a
x
£¬ÇóµÃaµÄÖµ£®Òò´ËµÃµ½·½³ÌΪ
1+x
2x
=
6
x
£¬·¢ÏÖËüÊÇ£¨1£©ÖÐËù¸øÒ»Áз½³ÌÖеÄÒ»¸ö£¬ÊǵÚ5¸ö£®
£¨3£©ÏȰ´ÕÕ¹æÂÉÁгö·½³ÌµÄµÚn¸ö·½³Ì£¬ÔÙÇó½â²¢¼ìÑ飮
½â´ð£º½â£º£¨1£©
1+x
2x
=
3
x
£¬
Á½±ßͬʱ³ËÒÔ2x£¬µÃ1+x=6£¬
½âµÃx=5£¬
¾­¼ìÑéÖª£¬x=5ÊÇÔ­·½³ÌµÄ¸ù£®
¹Ê´ð°¸Îªx=5£»

£¨2£©½«x=11´úÈë·½³Ì
1+x
2x
=
a
x
£¬
µÃ
1+11
2¡Á11
=
a
11
£¬
½âµÃa=6£¬
ËùµÃ·½³ÌΪ
1+x
2x
=
6
x
£¬
¸Ã·½³ÌÔÚ±íÄÚµÄÒ»Áз½³ÌÖУ¬ÊǵÚ5¸ö·½³Ì£»

£¨3£©Õâ¸ö·½³ÌµÄµÚn¸ö·½³ÌΪ
1+x
2x
=
n+1
x
£¨n¡Ý1£¬nΪÕûÊý£©£¬
ËüµÄ½âΪx=2n+1£®
¼ìÑ飺µ±x=2n+1ʱ£¬×ó±ß=
1+(2n+1)
2(2n+1)
=
2n+2
2(2n+1)
=
2(n+1)
2(2n+1)
=
n+1
2n+1
=Óұߣ¬
ËùÒÔ£¬x=2n+1ÊÇ·½³Ì
1+x
2x
=
n+1
x
µÄ½â£®
µãÆÀ£º±¾Ì⿼²éÁË·Öʽ·½³ÌµÄ½â£º
£¨1£©½â·Öʽ·½³ÌµÄ»ù±¾Ë¼ÏëÊÇ¡°×ª»¯Ë¼Ï롱£¬°Ñ·Öʽ·½³Ìת»¯ÎªÕûʽ·½³ÌÇó½â£®
£¨2£©½â·Öʽ·½³ÌÒ»¶¨×¢ÒâÒªÑé¸ù£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â·½³Ì£º
n(n-3)
2
=324£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ù¾Ý¸©ÊÓͼ»­³öÖ÷ÊÓͼºÍ×óÊÓͼ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÃæ²ÄÁÏ£º
С¶¡ÔÚÑо¿ÊýѧÎÊÌâʱÓöµ½Ò»¸ö¶¨Ò壺¶ÔÓÚÅźÃ˳ÐòµÄÈý¸öÊý£ºx1£¬x2£¬x3£¬³ÆÎªÊýÁÐx1£¬x2£¬x3£®¼ÆËã|x1|£¬
|x1+x2|
2
£¬
|x1+x2+x3|
3
£¬½«ÕâÈý¸öÊýµÄ×îСֵ³ÆÎªÊýÁÐx1£¬x2£¬x3µÄ¼ÛÖµ£®ÀýÈ磬¶ÔÓÚÊýÁÐ2£¬-1£¬3£¬ÒòΪ|2|=2£¬
|2+(-1)|
2
=
1
2
£¬
|2+(-1)+3|
3
=
4
3
£¬ËùÒÔÊýÁÐ2£¬-1£¬3µÄ¼ÛֵΪ
1
2
£®
С¶¡½øÒ»²½·¢ÏÖ£ºµ±¸Ä±äÕâÈý¸öÊýµÄ˳Ðòʱ£¬ËùµÃµ½µÄÊýÁж¼¿ÉÒÔ°´ÕÕÉÏÊö·½·¨¼ÆËãÆäÏàÓ¦µÄ¼ÛÖµ£®ÈçÊýÁÐ-1£¬2£¬3µÄ¼ÛֵΪ
1
2
£»ÊýÁÐ3£¬-1£¬2µÄ¼ÛֵΪ1£»¡­£®¾­¹ýÑо¿£¬Ð¡¶¡·¢ÏÖ£¬¶ÔÓÚ¡°2£¬-1£¬2¡±ÕâÈý¸öÊý£¬°´ÕÕ²»Í¬µÄÅÅÁÐ˳ÐòµÃµ½µÄ²»Í¬ÊýÁÐÖУ¬¼ÛÖµµÄ×îСֵΪ
1
2
£®
¸ù¾ÝÒÔÉϲÄÁÏ£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÊýÁÐ-4£¬-3£¬2µÄ¼ÛֵΪ
 
£»
£¨2£©½«¡°-4£¬-3£¬2¡±ÕâÈý¸öÊý°´ÕÕ²»Í¬µÄ˳ÐòÅÅÁУ¬¿ÉµÃµ½Èô¸É¸öÊýÁУ¬ÕâЩÊýÁеļÛÖµµÄ×îСֵΪ
 
£¬È¡µÃ¼ÛÖµ×îСֵµÄÊýÁÐΪ
 
£¨Ð´³öÒ»¸ö¼´¿É£©£»
£¨3£©½«2£¬-9£¬a£¨a£¾1£©ÕâÈý¸öÊý°´ÕÕ²»Í¬µÄ˳ÐòÅÅÁУ¬¿ÉµÃµ½Èô¸É¸öÊýÁУ®ÈôÕâЩÊýÁеļÛÖµµÄ×îСֵΪ1£¬ÔòaµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µãD¡¢EÔÚ¡÷ABCµÄ±ßBCÉÏ£¬AB=AC£®
£¨1£©ÈôAD=AE£¬ÇóÖ¤£ºBD=CE£®
£¨2£©ÈôBD=CE£¬FΪDEµÄÖе㣬ÇóÖ¤£ºAF¡ÍBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖª·´±ÈÀýº¯Êýy=
k
x
µÄͼÏó¾­¹ýµÚ¶þÏóÏÞÄڵĵãA£¨-1£¬m£©£¬AB¡ÍxÖáÓÚµãB£¬¡÷AOBµÄÃæ»ýΪ2£®ÈôÖ±Ïßy=ax+b¾­¹ýµãA£¬²¢ÇÒ¾­¹ý·´±ÈÀýº¯Êýy=
k
x
µÄͼÏóÉÏÁíÒ»µãC£¨n£¬-2£©£®
£¨1£©ÇóÖ±Ïßy=ax+bµÄ½âÎöʽ£»
£¨2£©ÉèÖ±Ïßy=ax+bÓëxÖá½»ÓÚµãM£¬ÇóAMµÄ³¤£»
£¨3£©Ð´³öax+b£¾
k
x
µÄxµÄ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Ò»Ö»ÂìÒÏ´ÓµãAÑØÊýÖáÏòÓÒÅÀÁË2¸öµ¥Î»³¤¶Èµ½´ïµãB£¬µãA±íʾ-1
1
2
£¬ÉèµãBËù±íʾµÄÊýΪm£®
£¨1£©ÇómµÄÖµ£»
£¨2£©Çó|m-1|+£¨m-6£©2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óë2-
3
Ïà³Ë£¬½á¹ûÊÇ1µÄÊýΪ£¨¡¡¡¡£©
A¡¢
3
B¡¢2-
3
C¡¢-2+
3
D¡¢2+
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èý½ÇÐÎÒ»±ß³¤Îª40£¬Ò»±ß³¤Îª50£¬ÇóµÚÈý±ßaµÄȡֵ·¶Î§
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸