精英家教网 > 初中数学 > 题目详情

【题目】如图所示,直线AB、CD、EF相交于点O,∠AOE=40°,∠BOC=2∠AOC,求∠DOF.

【答案】解:设∠AOC=x°,则∠BOC=(2x)°. 因为∠AOC与∠BOC是邻补角,所以∠AOC+∠BOC=180°
所以x+2x=180
解得x=60
所以∠AOC=60°.因为∠DOF与∠EOC是对顶角,
所以∠DOF=∠EOC=∠AOC-∠AOE=60°-40°=20°

【解析】图形中∠BOC与∠AOC互为邻补角,结合已知条件:∠BOC=2∠AOC,则可求出∠AOC,要求∠DOF只需求它的对顶角∠EOC即可,本题可用方程求解.
【考点精析】本题主要考查了对顶角和邻补角的相关知识点,需要掌握两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC=9cm,BC=6cm,D为BC的中点,动点P从B点出发,以每秒1cm的速度沿B→A→C的路线运动到C停止.设运动时间为t,过D、P两点的直线将△ABC的周长分成两个部分,若其中一部分是另一部分的2倍,则此时t的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小河两岸边各有一棵树,分别高30尺和20尺,两树的距离是50尺,每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见水面上游出一条鱼,它们立刻飞去抓鱼,速度相同,并且同时到达目标.则这条鱼出现的地方离开比较高的树的距离为尺.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x2-2x-8=0,则6x-3x2+18的值是(

A. -6 B. 6 C. 42 D. -42

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为实现教育均衡发展,打造新优质学校,瑶海区计划对A、B两类薄弱学校全部进行改造,根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元,求改造一所A类学校和一所B类学校所需的资金分别是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.

(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2 . 同组的小颖和小亮随后想出了相同的方法进行解决:将△ABD沿AD所在的直线对折得到△ADF(如图2);请证明小敏的发现的是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列因式分解正确的是( )

A. ab+ac+ad+1=a(b+c+d)+1

B. (x+1)(x+2)=x2+3x+2

C. a3+3a2b+a=a(a2+3ab+1)

D. x2-y2=(x+y)(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(21+2)÷(23)= .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元。小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:

奖券种类

紫气东来

花开富贵

吉星高照

谢谢惠顾

出现张数(张)

500

1000

2000

6500


(1)求“紫气东来”奖券出现的频率;
(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由。

查看答案和解析>>

同步练习册答案