分析 首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.
解答 证明:延长BD至F,使DF=BC,连接EF,![]()
∵AE=BD,△ABC为等边三角形,
∴BE=BF,∠B=60°,
∴△BEF为等边三角形,
∴∠F=60°,
在△ECB和△EDF中
$\left\{\begin{array}{l}{BE=EF}\\{∠B=∠F=60°}\\{BC=DF}\end{array}\right.$
∴△ECB≌△EDF(SAS),
∴EC=ED.
点评 此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com