精英家教网 > 初中数学 > 题目详情

【题目】已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)当点P与点Q重合时,如图1,写出QE与QF的数量关系,不证明;

(2)当点P在线段AB上且不与点Q重合时,如图2,(1)的结论是否成立?并证明;

(3)当点P在线段BA(或AB)的延长线上时,如图3,此时(1)的结论是否成立?请画出图形并给予证明.

【答案】
(1)

解:QE=QF,

理由是:如图1,∵Q为AB中点,

∴AQ=BQ,

∵BF⊥CP,AE⊥CP,

∴∠BFQ=∠AEQ=90°,

在△BFQ和△AEQ中

∴△BFQ≌△AEQ(AAS),

∴QE=QF,


(2)

解:中的结论仍然成立,

证明:如图2,延长FQ交AE于D,

∵Q为AB中点,

∴AQ=BQ,

∵BF⊥CP,AE⊥CP,

∴BF∥AE,

∴∠QAD=∠FBQ,

在△FBQ和△DAQ中,

∴△FBQ≌△DAQ(ASA),

∴QF=QD,

∵AE⊥CP,

∴EQ是Rt△DEF斜边上的中线,

∴QE=QF=QD,

即QE=QF.


(3)

解:(1)中的结论仍然成立,

证明:如图3,

延长EQ、FB交于D,

∵Q为AB中点,

∴AQ=BQ,

∵BF⊥CP,AE⊥CP,

∴BF∥AE,

∴∠1=∠D,

在△AQE和△BQD中,

∴△AQE≌△BQD(AAS),

∴QE=QD,

∵BF⊥CP,

∴FQ是Rt△DEF斜边DE上的中线,

∴QE=QF.


【解析】(1)证△BFQ≌△AEQ即可;(2)证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可;(3)证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可
【考点精析】利用三角形的“三线”对题目进行判断即可得到答案,需要熟知1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20,购买3棵榕树和2棵香樟树共需340.

(1)榕树和香樟树的单价各是多少?

(2)根据学校实际情况,需购买两种树苗共150,总费用不超过10840,且购买香樟树的棵数不少于榕树的1.5,请你算算该校本次购买榕树和香樟树共有哪几种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在第1个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1A2使得A1A2=A1C;在A2C上取一点D,延长A1A2A3,使得A2A3=A2D;…,按此做法进行下去,第n个三角形的以An为顶点的内角的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008

【答案】1﹣10m2n3+8m3n2;(22x﹣40(3)1

【解析】试题分析:1)原式利用单项式乘以多项式法则计算即可得到结果;

2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果

3)先根据幂的乘方的逆运算,把()2 016化为()1008,再根据积的乘方的逆运算计算即可.

试题解析:(1原式=5mn2)(﹣2mn+﹣4m2n)(﹣2mn=﹣10m2n3+8m3n2

2原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40

3)原式=()1008×161 008=(×16)1 008=1.

型】解答
束】
19

【题目】如图,方格图中每个小正方形的边长为1,点ABC都是格点.

1)画出△ABC关于直线BM对称的△A1B1C1

2)写出AA1的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于O点,OMAB.

1)若∠1=2,求∠NOD

2)若∠1=BOC,求∠AOC与∠MOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EFAC于点F,若DBC边上的中点,M为线段EF上一动点,则BDM的周长最短为______cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队(有甲、乙两组)承包一项工程,规定若干天内完成.

①已知甲组单独完成这项工程所需时间比规定时间多30天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?

②实际工作中,甲乙两组合做完成这项工程的后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为2个单位长度/秒,点在弧线上的速度为 个单位长度/秒,则2017秒时,点P的坐标是(
A.(2017,0)
B.(2017,
C.(2017,﹣
D.(2016,0)

查看答案和解析>>

同步练习册答案