【题目】如图,A,B两点在数轴上,A点对应的有理数是﹣2,线段AB=12,点P从点A出发,沿AB以每秒1个单位长度的速度向终点B匀速运动;同时点Q从点B出发,沿BA以每秒2个单位长度的速度向终点A匀速运动,设运动时间为ts
(1)请在数轴上标出原点O和B点所对应的有理数:
(2)直接写出PA= ,BQ= (用含t的代数式表示);
(3)当P,Q两点相遇时,求t的值;
(4)当P,Q两点相距5个单位长度时,直接写出线段PQ的中点对应的有理数.
【答案】(1)见解析;(2)t,2t;(3)t=4;(4)线段PQ的中点对应的有理数或.
【解析】
(1)∵A点对应的有理数是﹣2,线段AB=12,则B点表示的数是10;
(2)由题意可得:PA=t,BQ=2t;
(3)相遇时t+2t=12,则t=4;
(4)由题意可知,P点表示的数为﹣2+t,Q点表示的数是10﹣2t,设PQ的中点M的表示的数是4﹣,由题意可得|PQ|=|12﹣3t|=5,解得t=或t=,当t=时,M点表示的数为;当t=,M点表示的数为.
解:(1)∵A点对应的有理数是﹣2,线段AB=12,
∴B点表示的数是10;
(2)由题意可得:PA=t,BQ=2t,
故答案为t,2t;
(3)相遇时t+2t=12,
∴t=4;
(4)由题意可知,P点表示的数为﹣2+t,Q点表示的数是10﹣2t,
设PQ的中点M的表示的数是4﹣,
∵P,Q两点相距5个单位长度,
∴|PQ|=|12﹣3t|=5,
∴t=或t=,
当t=时,M点表示的数为;
当t=,M点表示的数为;
综上所述:线段PQ的中点对应的有理数或.
科目:初中数学 来源: 题型:
【题目】小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为( )
A. ﹣6或﹣3 B. ﹣8或1 C. ﹣1或﹣4 D. 1或﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=,例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是最佳分解,所以F(12)=.
(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1.
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点为直线上一定点,为直线上的动点,在直线与之间且在线段的右方作点,使得.设为锐角).
(1)求与的和;(提示过点作
(2)当点在直线上运动时,试说明;
(3)当点在直线上运动的过程中,若平分,也恰好平分,请求出此时的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB和∠COD都是直角,射线OE是∠AOC的平分线.
(1)把图中相等的角写出来,并说明它们相等的理由;
(2)若∠BOC=40°,直接写出∠BOD= 度,∠COE= 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与 时间x(秒)之间的函数关系如图所示.有下列说法:
①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )
A. 4个 B. 3个
C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-(x+k)(x-5)交x轴于点A、B(A左B右),交y轴交于点C,BD⊥AC垂足为D,BD与OC交于点E,且CE=4OE.
⑴如图1,求抛物线的解析式;
⑵如图2,点M为抛物线的顶点,MH⊥x轴,垂足为H,点P为第一象限MH右侧抛物线上一点,PN⊥x轴于点N,PA交MH于点F,FG⊥PN于点G,求tan∠GBN的值;
⑶如图3,在⑵的条件下,过点P作BG的平行线交直线BC于点S,点T为直线PS上一点,TC交抛物线于点Q,若CQ=QT,TS=,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相交于点D,与AB交于点E,AD平分∠FAB,连接ED并延长交AC的延长线于点F.
(1)求证:BC为⊙O的切线.
(2)求证:AE=AF;
(3)若DE=3,sin∠BDE=,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com