【题目】数学课上,同学们遇到这样一个问题:
如图1,已知, ,、分别是与 的角平分线,请同学们根据题中的条件提出问题,大家一起来解决(本题出现的角均小于平角)
同学们经过思考后,交流了自己的想法:
小强说:“如图2,若与重合,且,时,可求的度数.”
小伟说:“在小强提出问題的前提条件下,将的边从边开始绕点逆时针
转动,可求出的值.”
老师说:“在原題的条件下,借助射线的不同位置可得出的数量关系.”
(1)请解决小强提出的问题;
(2)在备用图1中,补充完整的图形,并解决小伟提出的问题
(3)在备用图2中,补充完整的图形,并解决老师提出的问题,即求三者之间的的数量关系.
【答案】(1)45;(2);(3)、、180、180.
【解析】
(1)根据角平分线定义即可解决小强提出的问题;
(2)在备用图1中,补充完整的图形,根据角平分线定义及角的和差计算即可解决小伟提出的问题;
(3)在备用图2中,补充完整的图形,分四种情况讨论即可解决老师提出的问题,进而求出三者之间的数量关系.
(1)如图2,
∵∠AOB=120,OF是∠BOC的角平分线
∴∠FOC=∠AOB=60
∵∠COD=30,OE是∠AOD的角平分线
∴∠EOC=∠COD=15
∴∠EOF=∠FOC∠EOC=45
答:∠EOF的度数为45;
(2)如图3,
∵OE、OF分别是∠AOD与∠BOC的角平分线,
∴设∠AO=∠DOE=∠AOD=
∠BOF=∠COF=∠BOC=
∴∠BOE=∠AOB∠AOE=120
∵∠BOC=∠AOB+∠COD∠AOD=1502
∴∠COF=75
∴∠DOF=∠COF∠COD=7530=45°
∴∠BOE∠DOF=(120)((45)=75
∵∠COE=∠COD∠DOE=30
∴∠EOF=∠FOC∠COE=(75)(30)=45
∴=
答:的值为;
(3)∵OE、OF分别是∠AOD与∠BOC的角平分线,
∴设∠AOE=∠DOE=∠AOD=
∠BOF=∠COF=∠BOC
∴①如图4,
∠AOC=∠AOD∠COD=2β
∵∠BOC=∠AOB∠AOC
=(2)
=2+
∴∠FOC=∠BOC= +
∵∠COE=∠DOE∠COD=
∴∠EOF=∠FOC+∠COE
=++
=().
②如图5,
∠AOC=∠AOD+∠COD=2+
∵∠BOC=∠AOB∠AOC
=(2+)
=2
∴∠FOC=∠BOC=
∵∠COE=∠DOE+∠COD=+
∴∠EOF=∠FOC+∠COE
=++
=(+).
③如图6,
∠AOC=∠AOD+∠COD=2+
∵∠BOC=360∠AOB∠AOC
=360(2+)
=3602
∴∠FOC=∠BOC=180
∵∠COE=∠DOE+∠COD=+
∴∠EOF=∠FOC+∠COE
=180++
=180().
④如图7,
∠AOC=∠AOD∠COD=2
∵∠BOC=360∠AOB∠AOC
=360(2)
=3602+
∴∠FOC=∠BOC=180+
∵∠COE=∠DOE∠COD=β
∴∠EOF=∠FOC+∠COE
=180 ++
=180(+).
答:、β、∠EOF三者之间的数量关系为:()、(+)、180()、180(+).
科目:初中数学 来源: 题型:
【题目】钓鱼岛是我国固有领土,现在我边海渔民要在钓鱼岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海警干扰,请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向,A位于B的北偏西30°方向,求A、C之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.
(1)在图①中,判断和形状.(填空)_______________________________________
(2)在图②中,判断四边形的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,斜坡AB的坡度,仰角∠CBE=50°.则山峰的高度CF约为( )米.(可用的参考数据:sin50°≈0.8,tan50°≈1.2, )
A. 500 B. 518 C. 530 D. 580
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE交CD于点F,∠1=∠2,∠3=∠4.
证明:
(1)∠BAE=∠DAC;
(2)∠3=∠BAE;
(3)AD∥BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后超过部分按原价85折优惠设顾客预计累计购物元()
(1)请用含的代数式分别表示顾客在两家超市购物所付的费用;
(2)某顾客分别到两家超市买了相同的货物,并且所付费用也相同你知道这位顾客共花了多少钱吗?请列出方程解答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象经过,两点.
(1)求这个一次函数的解析式;
(2)试判断点是否在这个一次函数的图象上;
(3)求此函数图象与轴,轴围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平面内两点.
(1)请用尺规按下列要求作图,并保留作图痕迹;
①连接;
②在线段的延长线上取点,使;
③在线段的延长线上取点,使.
(2)请求出线段与线段长度之间的数量关系.
(3)如果,则的长度为________,的长度为________,的长度为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com