精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A( )和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.

(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)求△PAC为直角三角形时点P的坐标.

【答案】
(1)

解:∵B(4,m)在直线y=x+2上,

∴m=4+2=6,

∴B(4,6),

∵A( )、B(4,6)在抛物线y=ax2+bx+6上,

,解得

∴抛物线的解析式为y=2x2﹣8x+6


(2)

解:设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),

∴PC=(n+2)﹣(2n2﹣8n+6),

=﹣2n2+9n﹣4,

=﹣2(n﹣ 2+

∵PC>0,

∴当n= 时,线段PC最大且为


(3)

解:∵△PAC为直角三角形,

i)若点P为直角顶点,则∠APC=90°.

由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;

ii)若点A为直角顶点,则∠PAC=90°.

如答图3﹣1,过点A( )作AN⊥x轴于点N,则ON= ,AN=

过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,

∴MN=AN= ,∴OM=ON+MN= + =3,

∴M(3,0).

设直线AM的解析式为:y=kx+b,

则: ,解得

∴直线AM的解析式为:y=﹣x+3 ①

又抛物线的解析式为:y=2x2﹣8x+6 ②

联立①②式,解得:x=3或x= (与点A重合,舍去)

∴C(3,0),即点C、M点重合.

当x=3时,y=x+2=5,

∴P1(3,5);

iii)若点C为直角顶点,则∠ACP=90°.

∵y=2x2﹣8x+6=2(x﹣2)2﹣2,

∴抛物线的对称轴为直线x=2.

如答图3﹣2,作点A( )关于对称轴x=2的对称点C,

则点C在抛物线上,且C( ).

当x= 时,y=x+2=

∴P2 ).

∵点P1(3,5)、P2 )均在线段AB上,

∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(


【解析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,E. F. GH分别是边ABBCCDDA的中点.

(1)判断四边形EFGH的形状,并说明你的理由;

(2)连接BDAC,BDAC满足何条件时,四边形EFGH是正方形?证明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.

(1)求该商场购进甲、乙两种商品各多少件?

(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,BC=6cm.射线 AGBC,点 E 从点 A 出发沿射线 AG 2cm/s 的速度运动,当点 E 先出发 1s 后,点 F 也从点 B 出发沿射线 BC cm/s 的速度运动分别连结 AF,CE.设点 F 运动时间为 t(s),其中 t>0.

(1) t 为何值时,∠BAF<BAC;

(2) t 为何值时,AE=CF;

(3) t 为何值时,SABF+SACE<SABC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解七年级学生期中考试数学成绩情况,从中抽取了部分学生的数学成绩进行调查,规定满分为100A等为90分,B等为80分;C等为60分;D等是60分以下不含60,并根据调查结果制成如下不完整的统计图:

本次抽查了______名七年级学生;

补全条形统计图;

求扇形统计图中表示“C等”部分的扇形的中心角度数;

结合统计图,写出两条正确的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的顶点为D(﹣1,2),其部分图象如图所示,给出下列四个结论: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若点P(x0 , y0)在抛物线上,则ax02+bx0+c≤a﹣b+c.其中结论正确的是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙队单独完成这项工程需要多少天?

(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABCD中,E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是(

AF=CF;AE=CF;③∠BAE=FCD;④∠BEA=FCE。

A. ①或② B. ②或③ C. ③或④ D. ①或③或④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(友情提醒:画出线段图帮助分析)

(1)乙车的速度是________千米/小时,B、C两地的距离是________千米, A、C两地的距离是________千米;

(2)求甲车的速度;

(3)这一天,乙车出发多长时间,两车相距200千米?

查看答案和解析>>

同步练习册答案