精英家教网 > 初中数学 > 题目详情

已知,如图,△ABC中,∠C=90°,D、E分别是AB、AC的中点,若AC=4,AB=5,则CD=________,DE=________.

    
分析:根据勾股定理易求BC的长.
CD是斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得其长度;
DE是中位线,根据中位线定理可求其长度.
解答:∵AC=4,AB=5,∠C=90°,
∴由勾股定理得:BC=3.
∵D、E分别是AB、AC的中点,
∴CD=AB=
DE=BC=
故答案为:
点评:此题考查的是三角形中位线定理和直角三角形斜边上的中线等于斜边的一半的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案