【题目】如图,AB∥CD,BE平分∠ABD,DE平分∠BDC。
(1)求证:BE⊥DE;
(2)H是直线CD上一动点(不与D重合),HI平分∠HBD交CD于点I。请你画出图形,并猜想∠EBI与∠BHD的数量关系,且说明理由。
【答案】(1)见解析;(2)当H在点D的左侧时,∠BHD=2∠EBI;当H在点D的右侧时,∠BHD=180°-2∠EBI;理由见解析
【解析】
(1)根据平行线的性质以及角平分线的定义,即可得到BE⊥DE;
(2)根据角平分线的定义可得∠ABD=2∠EBD;∠HBD=2∠DBI,然后分点H在点D的左边和右边两种情况,表示出∠ABH和∠BHD,从而得解
(1)证明:过点E作EF∥AB
∴∠ABE=∠BEF
又∵AB∥CD
∴∠ABD+∠BDC=180°,EF∥CD,
∴∠FED=∠CDE
∵BE平分∠ABD,DE平分∠BDC,
∴∠ABE=∠ADB,∠CDE=∠BDC,
∴∠ABE+∠CDE=×180°=90°
∴∠BEF+∠FED=90°,即∠BED=90°
∴BE⊥DE
(2)①当H在点D的左侧时,∠BHD=2∠EBI;
证明:∵AB∥CD
∴∠ABH=∠BHD;
∵BE平分∠ABD,BI平分∠HBD,
∴∠ABD=2∠EBD;∠HBD=2∠DBI;
∠ABH=∠ABD-∠HBD=2(∠EBD-∠DBI)=2∠EBI;
∴∠BHD=2∠EBI;
②当H在点D的右侧时,∠BHD=180°-2∠EBI;
证明:∵AB∥CD
∴∠BHD=∠1;
又∵∠1+∠ABH=180°;
∴∠1+∠ABD+∠DBH=180°,
∵BE平分∠ABD,BI平分∠HBD,
∴∠ABD=2∠EBD;∠HBD=2∠DBI;
∴∠1+2∠EBD+2∠DBI=180°,
∴∠1=180°-2(∠EBD+∠DBI) =180°-2∠EBI,
即∠BHD=180°-2∠EBI。
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
(1)求证:BC为⊙O的切线;
(2)若AB=4,AD=1,求线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形BCDE的各边分别平等于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后第2015次相遇地点的坐标是( )
A. (2,0)B. (-1,-1)C. (-2,1)D. (-1,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=α,则∠BEF的度数为_____(用含α的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC、BD交于点E,点E为BD的中点,∠BAC+∠BDC=180°,AB=CD=5,tan∠ACB=,则AD=______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】铜陵某初中根据教育部在中小学生中每天开展体育活动一小时的通知要求,共开设了排球、篮球、体操、羽毛球四项体育活动课,全校每个学生都可根据自己的爱好任选其中一项.体育老师在所有学生报名中,随机抽取了部分学生的报名情况进行了统计,并将结果整理后绘制了如图两幅不完整的统计图
根据以上统计图解答:
(1)体育老师随机抽取了______名学生,并将条形图补充完整;
(2)在扇形统计图中,求“排球”部分所对应的圆心角的度数并补全扇形统计图;
(3)若学校一共有1600名学生,请估计该校报名参加“篮球”这一项目的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点坐标为,点坐标为,过点作直线轴,垂足为,交线段于点.
(1)如图1,过点作,垂足为,连接.
①填空:的面积为______;②点为直线上一动点,当时,求点的坐标;
(2)如图2,点为线段延长线上一点,连接,,线段交于点,若,请直接写出点的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为100cm2,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形ABDC的面积是( )
A. 40cm2B. 60cm2C. 70cm2D. 80cm2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com