精英家教网 > 初中数学 > 题目详情
3.如图,由下列条件可以判定图中哪两条直线平行,说明理由
(1)若∠1=∠B,则AD∥BC;
(2)若∠3=∠4,则AB∥DC;
(3)若∠1=∠D,则AB∥DC;
(4)若∠2+∠3+∠B=180°,则AD∥BC.

分析 (1)根据同位角相等,两直线平行得出即可;
(2)根据内错角相等,两直线平行得出即可;
(3)根据内错角相等,两直线平行得出即可;
(4)根据同旁内角互补,两直线平行得出即可.

解答 解:(1)∵∠1=∠B,
∴AD∥BC(同位角相等,两直线平行),
故答案为:AD,BC;

(2)∵∠3=∠4(内错角相等,两直线平行),
∴AB∥DC,
故答案为:AB,DC;

(3)∵∠1=∠D,
∴AB∥DC(内错角相等,两直线平行),
故答案为:AB,DC;

(4)∵∠2+∠3+∠B=180°,
∴AD∥BC(同旁内角互补,两直线平行),
故答案为:AD,BC.

点评 本题考查了平行线的判定的应用,能正确运用定理进行推理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.已知正方形ABCD,探究以下问题:
(1)如图1,点F在BC上,作FE⊥BD于点E,取DF的中点G,连接EG、CG,将△EGC沿直线EC翻折到△EG′C,求证:四边形EGCG′是菱形;
(2)如图2,点F是BC外一点,作FE⊥BC于点E,且BE=EF,连接DF,取DF的中点G,将△EGC沿直线EC翻折到△EG′C,作FM⊥CD于点M,请问(1)中的结论”四边形EGCG′是菱形”是否依然成立,并说明理由;
(3)在(2)的条件下,若图2中AB=4,设BE长为x,四边形EGCG′的面积为S,请求出S关于x的函数关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.问题提出
学习了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
初步思考
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可以分为“∠B是直角、钝角、锐角”三种情况进行探究.
深入探究
第一种情况:当∠B为直角时,△ABC≌△DEF
(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B为钝角时,△ABC≌△DEF
(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B为锐角时,△ABC和△DEF不一定全等
(3)如图,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中再作出△DEF,△DEF和△ABC不全等.(不写作法,保留作图痕迹).
(4)∠B还要满足什么条件,就可以使得△ABC≌△DEF,请直接填写结论:
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,⊙O为△ABC的外接圆,点P为CB延长线上一点,且∠PAB=∠C.求证:PA是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,⊙O是以原点为圆心,$\sqrt{2}$为半径的圆,点P是直线y=-x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则S△PQO的最小值为(  )
A.3B.4$\sqrt{2}$C.6-$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,AB与⊙O相切于点C,∠A=∠B,OA,OB分别交⊙O于点E,F.
(1)求证:AE=BF;
(2)若D是优弧EF上一点,连接DE,DC,$\frac{OB}{AB}$=$\frac{5}{8}$,求tan∠CDE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知∠1=∠2,BD平分∠ABC,可得到那两条直线平行?如果要得到另外两条直线平行,则应将上述两个条件之一做如何改变?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.(x32n=x6n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小明用下面的方法求出方程2$\sqrt{x}$-3=0的解,请你仿照他的方法求出下面两外两个方程的解,并把你的解答过程填写在下面的表格中.
 方程 换元法得新方程 解新方程检验  求原方程的解
 2$\sqrt{x}$-3=0 令$\sqrt{x}$=t,则2t-3=0t=$\frac{3}{2}$ t=$\frac{3}{2}>0$ $\sqrt{x}$=$\frac{3}{2}$,所以x=$\frac{9}{4}$
 x+2$\sqrt{x}$-3=0令$\sqrt{x}$=t,则t2+2t-3=0 t=-3或t=1t=-3<0,t=1>0$\sqrt{x}$=1,所以x=1 
 x+$\sqrt{x-2}-4=0$令$\sqrt{x-2}$=t,则t2+t-2=0 t=-2或t=1t=-2<0,t=1>0 $\sqrt{x-2}$=1,所以x=3

查看答案和解析>>

同步练习册答案