精英家教网 > 初中数学 > 题目详情

【题目】下列语句中,正确的是

A.同一平面上三点确定一个圆

B.菱形的四个顶点在同一个圆上

C.三角形的外心是三角形三边垂直平分线的交点

D.三角形的外心到三角形三边的距离相等

【答案】C

【解析】

根据确定圆的条件,三角形的外心的定义,以及圆内接四边形的对角互补的性质对各选项分析判断后利用排除法.

A选项: 同一平面上三点必须不在同一直线上才可以确定一个圆,故选项A错误;

B选项:菱形的对角相等,但不一定互补,所以四个顶点不一定在同一个圆上,故选项B错误;

C选项:三角形的外心是三角形三边中垂线的交点,是外心定义,故选项C正确;

D选项:三角形的外心到三角形三个定点的距离相等,到三边的距离不一定相等,故选项D错误;

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下表是我市某一天在不同时段测得的气温情况

0:00

4:00

8:00

12:00

16:00

20:00

25℃

27℃

29℃

32℃

34℃

30℃

则这一天气温的极差是℃.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是(

A.4 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BD、CE是腰AB、AC上的高,交于点O.
(1)求证:OB=OC.
(2)若∠ABC=65°,求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.

如图,已知ABBM,EDBM,GFBM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(
A.对角线相等的平行四边形是菱形
B.有一组邻边相等的平行四边形是菱形
C.对角线相互垂直的四边形是菱形
D.有一个角是直角的平行四边形是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m,为增大向阳面的面积,将立柱AD增高并改变位置后变为EF,使屋顶结构外框由△ABC变为△EBC(点E在BA的延长线上)如图2所示,且立柱EF⊥BC,若EF=3m,则斜梁增加部分AE的长为m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知不等式 的最小整数解为方程 的解,求代数式 的值.

查看答案和解析>>

同步练习册答案