8£®Ä³µØÒòºéË®ÊÜÔÖ£¬Ä³Ò©³§½Óµ½ÁËÒ»ÅúÉú²úÏû¶¾Ë®µÄÈÎÎñ£®ÒªÇóÔÚ8ÌìÖ®ÄÚ£¨º¬8Ì죩Éú²úA¡¢BÁ½ÖÖÐͺŵÄÏû¶¾Ë®¹²5ÍòÆ¿£¬ÆäÖÐAÐͺÅÏû¶¾Ë®²»µÃÉÙÓÚ1.8ÍòÆ¿£®¸Ã³§µÄÉú²úÄÜÁ¦ÊÇ£ºÈôÉú²úAÐͺÅÏû¶¾Ë®Ã¿ÌìÄÜÉú²ú0.6ÍòÆ¿£¬ÈôÉú²úBÐͺÅÏû¶¾Ë®Ã¿ÌìÄÜÉú²ú0.8ÍòÆ¿£®ÒÑÖªÉú²úһƿAÐͺÅÏû¶¾Ë®¿É»ñÀû0.5Ôª£¬Éú²úһƿBÐͺÅÏû¶¾Ë®¿É»ñÀû0.3Ôª£®¸Ã³§ÔÚÕâ´ÎÈÎÎñÖÐÉú²úÁËAÐͺÅÏû¶¾Ë®xÍòÆ¿£®
£¨1£©Éè¸Ã³§ÔÚÕâ´ÎÈÎÎñÖÐËù»ñµÃµÄ×ÜÀûÈóΪyÍòÔª£¬ÊÔд³öy¹ØÓÚxµÄº¯Êý¹Øϵ£¬²¢Çó³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£®£¨
£¨2£©ÔÚÍê³ÉÈÎÎñµÄÇ°ÌáÏ£¬ÇÉÃî°²ÅÅÉú²úA¡¢BÁ½ÖÖÐͺŵÄÏû¶¾Ë®µÄÆ¿Êý£¬¸Ã³§¾Í¿É»ñµÃ×î´ó×ÜÀûÈó£»µ«ÔÖÇé¼´¾üÇ飬¿Ì²»ÈÝ»º£¬¸Ã³§³§³¤¶ÏÈ»·ÅÆúÁË×î´ó×ÜÀûÈó£¬Ñ¡ÔñÁËÔÚ×î¶Ìʱ¼äÄÚÍê³ÉÈÎÎñ£¬ÇëÄã¼ÆËã¸Ã³§ÔÚ×î¶Ìʱ¼äÄÚÍê³ÉÈÎÎñËù»ñµÃµÄÀûÈó½Ï×î´ó×ÜÀûÈóÉÙ»ñÀû¶àÉÙÍòÔª£®

·ÖÎö £¨1£©¸ù¾ÝµÈÁ¿¹Øϵ¡°×ÜÀûÈó=AÐͺÅÏû¶¾Ë®ÀûÈó+BÐͺÅÏû¶¾Ë®ÀûÈó¡±Áгöy¹ØÓÚxµÄº¯Êý¹Øϵʽ£»
£¨2£©ÓÉÌõ¼þ¡°8ÌìÖ®ÄÚÍê³É¡±¡°AÐͺÅÏû¶¾Ë®²»µÃÉÙÓÚ1.8ÍòÆ¿¡±È·¶¨Ëù»ñÀûÈóµÄ×î´óÖµ¼´¿É£®

½â´ð ½â£º£¨1£©Éè¸Ã³§ÔÚÕâ´ÎÈÎÎñÖÐÉú²úAÐͺÅÏû¶¾Ë®xÍòÆ¿£¬ÔòÉú²úBÐͺÅÏû¶¾Ë®£¨5-x£©ÍòÆ¿£»
y=0.5x+0.3¡Á£¨5-x£©=0.2x+1.5£¬
ÓÉÏÞÖÆÌõ¼þµÃ£º$\left\{\begin{array}{l}{\frac{x}{0.6}+\frac{5-x}{0.8}¡Ü8}\\{1.8¡Üx¡Ü5}\end{array}\right.$£¬
½âµÃ£º1.8¡Üx¡Ü4.2£¬
¡à×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§Îª£º1.8¡Üx¡Ü4.2£®

£¨2£©ÓÉ£¨1£©µÃy=0.2x+1.5£¬
¡ßk=0.2£¾0£¬
¡àyËæxµÄÔö´ó¶øÔö´ó£¬
ÓÖ¡ß1.8¡Üx¡Ü4.2£¬
¡àµ±x=4.2ʱ£¬y×î´ó×ÜÀûÈó=0.2¡Á4.2+1.5=2.34ÍòÔª£®
´ËʱÉú²úAÐÍ£º4.2ÍòÖ»£¬BÐÍ£º0.8ÍòÖ»£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óü°Ò»ÔªÒ»´Î²»µÈʽµÄÒòÓ¦Óã¬Ðè½èÖúº¯Êý·½³Ì¼°²»µÈʽÇó½â£¬Ñ§ÉúÓ¦µ±×¢ÖØÅàÑø¶ÔÌâÀí½âµÄÄÜÁ¦£¬½â´ðÒ»´Îº¯ÊýµÄÓ¦ÓÃÎÊÌâÖУ¬Òª×¢Òâ×Ô±äÁ¿µÄÈ¡Öµ·¶Î§»¹±ØÐëʹʵ¼ÊÎÊÌâÓÐÒâÒ壮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÓÃһƽÃæÈ¥½ØÏÂÁм¸ºÎÌ壬Æä½ØÃæ¿ÉÄÜÊdz¤·½ÐεÄÓУ¨¡¡¡¡£©
A£®4¸öB£®3¸öC£®2¸öD£®1¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êýy=-$\frac{1}{\sqrt{3-2x}}$ÖУ¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇx£¼$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô4x=a£¬2y=b£¬Ôò84x-y=$\frac{{a}^{6}}{{b}^{3}}$£®£¨Óú¬a¡¢bµÄ´úÊýʽ±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èô ab£¼0£¬a-b£¾0£¬a+b£¾0£¬ÔÚÊýÖáÉϱê³öa£¬b£¬-a£¬-b£»

Óá°£¾¡±½«£ºa£¬b£¬-a£¬-bÁ¬½ÓÆðÀ´£ºa£¾-b£¾b£¾-a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©2ax2-3ax2-7ax2             
£¨2£©-£¨-2x2y£©-£¨+3xy2£©-2£¨-5x2y+2xy2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Í¨·Ö$\frac{a}{{{a^2}+4a+4}}$Óë$\frac{2a-4}{{{a^2}-4}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Ò»¸öÕýnÀâÖù¹²ÓÐ15ÌõÀ⣬һÌõ²àÀâµÄ³¤Îª5cm£¬Ò»Ìõµ×Ãæ±ß³¤Îª3cm£¬ÔòÕâ¸öÀâÖùµÄ²àÃæ»ýΪ75cm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬AΪDEµÄÖе㣬ÉèS1=S¡÷DBC£¬S2=S¡÷ABC£¬S3=S¡÷EBC£¬ÔòS1£¬S2£¬S3µÄ¹ØϵÊÇ£¨¡¡¡¡£©
A£®S2=$\frac{3}{2}$£¨S1+S3£©B£®S2=$\frac{1}{2}$£¨S3-S1£©C£®S2=$\frac{1}{2}$£¨S1+S3£©D£®S2=$\frac{3}{2}$£¨S3-S1£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸