精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料.

让我们规定一种运算 =ad-cb,如 =2×5-3×4=-2,再如 =4x-2.按照这种运算规定,请解答下列问题.

(1)计算: 的值;

(2)当x=-1时,求 的值(要求写出计算过程).

【答案】(1)1; -7; -x;(2)当x=-1时,原式=-7.

【解析】

(1)根据新运算的定义式代入数据求出结果即可

(2)根据新运算的定义式将原式化简为﹣x﹣8,代入x=﹣1即可得出结论

1)0.5×4=3﹣2=1;

3×5﹣(﹣2)×4=﹣15﹣(﹣8)=﹣7;

2×(﹣5x)﹣(﹣3x)×3=﹣10x﹣(﹣9x)=﹣x

故答案为:1;﹣7;﹣x

(2)原式=(﹣3x2+2x+1)×(﹣2)﹣(﹣2x2+x﹣2)×(﹣3)=(6x2﹣4x﹣2)﹣(6x2﹣3x+6)=﹣x﹣8.

x=﹣1原式=﹣x﹣8=﹣(﹣1)﹣8=﹣7.

∴当x=﹣1的值为﹣7.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算

(1) (2)(-)×(-

(3) (4)(-2a23+ a8÷a2 +3a·a5

(5)(2x-5)(2x+5)-2x(2x-3) (6)(3x+y)2-(3x-y)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两列火车分别从A,B两城同时相向匀速驶出,甲车开往终点B城,乙车开往终点A城,乙车比甲车早到达终点;如图,是两车相距的路程d(千米)与行驶时间t(小时)的函数关系图象.
(1)A,B两城相距千米,经过小时两车相遇;
(2)分别求出甲、乙两车的速度;
(3)直接写出甲车距A城的路程S1、乙车距A城的路程S2与t的函数关系式;(不必写出t的范围)
(4)当两车相距100千米时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进A、B两种商品,若购进A种商品20件和B种商品15件需380元;若购进A种商品15件和B种商品10件需280元.

(1)求A、B两种商品的进价分别是多少元?

(2)若购进A、B两种商品共100件,总费用不超过900元,问最多能购进A种商品多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,ABCD,PAB=130°,PCD=120°.求APC度数.

小明的解题思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50°+60°=110°.

问题迁移:

(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=α,BCP=β.试判断CPD、α、β之间有何数量关系?请说明理由;

(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、α、β间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,贤贤同学用手工纸制作一个台灯灯罩,请画出这个几何体的左视图和俯视图.
(2)如图2,已知直线AB与CD相交于点O,EO⊥AB,OF是∠AOC的平分线,∠EOC=∠AOC,求∠DOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB边的垂直平分线BCDAC边的垂直平分线BCE 相交于点OADE的周长为6cm

1)求BC的长;

2)分别连结OAOBOC,若△OBC的周长为16cm,求OA的长;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题引入:

(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (α表示);

如图2,CBO=ABC,BCO=ACB,A=α,则∠BOC= (α表示);

拓展研究:

(2)如图3,CBO=DBC,BCO=ECB,A=α,猜想∠BOC= (α表示),并说明理由;

(3)BO、CO分别是△ABC的外角∠DBC、ECBn等分线,它们交于点O,CBO=DBC,BCO=ECB,A=α,请猜想∠BOC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上图中点A表示-36,点B表示44,动点PQ分别从AB两点同时出发,相向而行,动点PQ的运动速度比之是32(速度单位:1个单位长度/秒).12秒后,动点P到达原点O动点Q到达点C设运动的时间为tt>0)秒.

(1)OC的长;

(2)经过t秒钟,P、Q两点之间相距5个单位长度t的值;

(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间若未能到达,说明理由

查看答案和解析>>

同步练习册答案