【题目】如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠PAQ=90°,连接CQ.
(1)求证:CQ⊥BC.
(2)△ACQ能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.
(3)当点P在BC上什么位置时,△ACQ是等腰三角形?请说明理由.
【答案】(1)证明见解析;(2)点P为BC的中点或与点C重合时,△ACQ是直角三角形;(3)当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.
【解析】
(1)根据同角的余角相等求出∠BAP=∠CAQ,然后利用“边角边”证明△ABP和△ACQ全等,根据全等三角形对应角相等可得∠ACQ=∠B,再根据等腰直角三角形的性质得到∠B=∠ACB=45°,然后求出∠BCQ=90°,然后根据垂直的定义证明即可;
(2)分∠APB和∠BAP是直角两种情况求出点P的位置,再根据△ABP和△ACQ全等解答;
(3)分BP=AB,AB=AP,AP=BP三种情况讨论求出点P的位置,再根据△ABP和△ACQ全等解答.
解:(1)∵∠BAP+∠CAP=∠BAC=90°,∠CAQ+∠CAP=∠PAQ=90°,
∴∠BAP=∠CAQ,
在△ABP和△ACQ中,
,
∴△ABP≌△ACQ(SAS),
∴∠ACQ=∠B,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∴∠BCQ=∠ACB+∠ACQ=45°+45°=90°,
∴CQ⊥BC;
(2)当点P为BC的中点或与点C重合时,△ACQ是直角三角形;
(3)①当BP=AB时,△ABP是等腰三角形;
②当AB=AP时,点P与点C重合;
③当AP=BP时,点P为BC的中点;
∵△ABP≌△ACQ,
∴当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.
科目:初中数学 来源: 题型:
【题目】已知,点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在BC上,求证:△ABC是等腰三角形.
(2)如图2,若点O在△ABC内部,求证:AB=AC.
(3)若点O点在△ABC的外部,△ABC是等腰三角形还成立吗?请画图表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点C,若ACAB=12,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知定点A(1,0)和B(0,1).
(1)如图1,若动点C在x轴上运动,则使△ABC为等腰三角形的点C有几个?
(2)如图2,过点A,B向过原点的直线l作垂线,垂足分别为M、N,试判断线段AM、BN、MN之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)
(1)当B(﹣4,0)时,求抛物线的解析式;
(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;
(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一张矩形纸片ABC的按如图方式折叠,使顶点B落在边AD上(记为点B′),点A落在点A′处,折痕分别与边AD、BC交于点E、F.
(1)试在图中连接BE,求证:四边形BFB′E是菱形;
(2)若AB=8,BC=16,求线段BF长能取到的整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.
(1)求证:GF=BF.
(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FOED=ODEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.
(1)点P(a,b)经过T变换后得到的点Q的坐标为 ;若点M经过T变换后得到点N(6,﹣ ),则点M的坐标为 .
(2)A是函数y= x图象上异于原点O的任意一点,经过T变换后得到点B.
①求经过点O,点B的直线的函数表达式;
②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com