精英家教网 > 初中数学 > 题目详情

Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当数学公式时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

、解:(1)作BG⊥OA于G.
在Rt△OBG中,=cos∠BOA=cos60°=
=
=
又∵∠DOC=∠BOG,
∴△DOC∽△BOG,
∴∠DCO=∠BGO=90°.
即DC⊥OA;

(2)当0<t<时,
在Rt△OCD中,CD=OD×sin60°=2t×=t,
∴S=×OC×CD=×t×t=t2;
≤t<5时(如图2)
过点D作DH⊥OA于H.
在Rt△AHD中,
HD=AD×sin60°=(10-2t)×=(5-t),
S=×OC×HD=×t×(5-t)=t-t2

(3)当DE∥OC时,△DBE是等边三角形.(如图3)
BE=BD=5-2t.
在△CAE中,∠ECA=90°-∠DCE=30°,∠BAO=60°,
∴∠CEA=90°.
而AC=5-t,∴AE=AC=
∴BE+AE=(5-2t)+=5,
∴t=1,
因此AE==2.
过点E作EM⊥OA于M.
则EM=AE×sin60°=2×=
AM=AE×cos60°=2×=1,OM=OA-AM=4.
∴点E的坐标为(4,);
当CD∥OE时(如图4),BD=2t-5.
∠OEA=90°,∴CD⊥AB.
而△OAB是等边三角形,
∴DE=BD-AB=
∴2t-5=
∴t=
因此AE==
∴E的纵坐标为×=
横坐标为5-×=
∴点E的坐标为();
综上所述,点E的坐标为(4,)或();

Ⅱ、(1)解:取BC的中点D,过A、D画直线,则直线AD为所求;

(2)证明:∵l1∥l2
∴点E,F到l2之间的距离都相等,设为h.
∴S△EGH=GH•h,S△FGH=GH•h,
∴S△EGH=S△FGH
∴S△EGH-S△GOH=S△FGH-S△GOH
∴△EGO的面积等于△FHO的面积;

(3)解:取BC的中点D,连接MD,过点A作AN∥MD交BC于点N,过M、N画直线,则直线MN为所求.
分析:Ⅰ、(1)当0<t<时,点C不过OA中点,想证明垂直应先作出一条和CD有关的垂线,利用相似求解;
(2)应分当0<t<时,和≤t<5时两种情况探讨,应用t表示利用特殊的三角函数表示出OC边上的高.进而表示出面积即可.
(3)以O、C、E、D为顶点的四边形是梯形,那么应根据(1)(2)中的两种类型的三角形,可分DE∥CO、CD∥OE两种情况进行探讨;
Ⅱ、(1)根据三角形的面积公式,只需过点A和BC的中点画直线即可;
(2)结合平行线间的距离相等和三角形的面积公式即可证明;
(3)结合(1)和(2)的结论进行求作.
点评:Ⅰ、是一道旋转与运动相结合的大题,并且联系函数与四边形知识,要注意这些知识点间的融会贯通.
Ⅱ、主要是根据三角形的面积公式,知:三角形的中线把三角形的面积等分成了相等的两部分;同底等高的两个三角形的面积相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在舞台上有两根竖直放置的铁杆,其中铁杆AB长1m,CD长2m,两根铁杆之间的距离为3m,现在B、D之间拉起一根钢索,杂技演员在上面表演走钢丝,为了描述演员的位置,小明以A点为坐标原点,建立了如图所示的平面直角坐标系,演员的位置为点M,设其精英家教网横坐标为x,纵坐标为y.
(1)写出线段BD的函数关系式;
(2)为了保护演员的安全,过D点拉了一根与地面平行的钢索DE,在上面挂上了一条保险钢丝MN,MN随演员的移动而移动,并始终垂直于地面,其长度自动调整,设保险钢丝的长度为w,求w与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•沙坪坝区模拟)如图1,在同一平面内,Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC与DF重合,△ABC始终保持不动.
(1)将△DEF沿CB(EB)方向平移,直到点E与点B重合为止,设平移的距离为x,两个三角形重叠部分的面积为y,写出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)如图2,将△DEF绕点C逆时针旋转,旋转后得到的三角形为△D′E′F,设D′E′与AC交于点M,当∠ECE′=∠EAC时,求线段CM的长;
(3)如图3,在△DEF绕点C逆时针旋转的过程中,若设D′F所在直线与AB所在直线的交点为N,是否存在点N使△ACN为等腰三角形,若存在,求出线段BN的长,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.
(1)求点E的坐标;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2数学公式相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案