精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.

(1)若EF=2,求AEF的面积;

(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.

【答案】(1) (2)证明见解析

【解析】分析:(1)先证明△CDE≌△CBF,得到CD=CB,可得ABCD是菱形,则AD=AB,由DE=BFAE=AF,则△AEF是等边三角形,根据EF的长可得△AEF的面积;

(2)延长DPBCN,连结FN,证明△CPN≌△EPD,得到AE=BN,证明△FBN≌△DEF,得到FN=FD,根据等腰三角形三线合一的性质可得结论.

详解:(1)∵四边形ABCD是平行四边形,

∴∠D=B,

BF=DE,DCE=BCF,

∴△CDE≌△CBF(AAS),

CD=CB,

ABCD是菱形,

AD=AB,

AD﹣DE=AB﹣BF,即AE=AF,

∵∠A=60°,

∴△AEF是等边三角形,

EF=2,

SAEF=×22=

(2)证明:如图2,延长DPBCN,连结FN,

∵四边形ABCD是菱形,

ADBC,

∴∠EDP=PNC,DEP=PCN,

∵点PCE的中点,

CP=EP.

∴△CPN≌△EPD,

DE=CN,PD=PN.

又∵AD=BC.

AD﹣DE=BC﹣CN,即AE=BN.

∵△AEF是等边三角形,

∴∠AEF=60°,EF=AE.

∴∠DEF=120°,EF=BN.

ADBC,

∴∠A+ABC=180°,

又∵∠A=60°,

∴∠ABC=120°,

∴∠ABC=DEF.

又∵DE=BF,BN=EF.

∴△FBN≌△DEF,

DF=NF,

PD=PN,

PFPD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】节能灯在城市已经基本普及,某商场计划购进甲、乙两种型号的节能灯共1200只,这两种节能灯的进价、售价如下表:

(1)如何进货,进货款恰好为46000.

(2)如何进货,商场销售完节能灯后获利恰好是进货价的30%,此时利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x1x2x3,称为数列x1x2x3.计算|x1|,将这三个数的最小值称为数列x1x2x3的最佳值.例如,对于数列2-13,因为|2|=2==,所以数列2-13的最佳值为

东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-123的最佳值为;数列3-12的最佳值为1.经过研究,东东发现,对于“2-13”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为.根据以上材料,回答下列问题:

1)数列-4-31的最佳值为

2)将“-4-32”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);

3)将2-9aa1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OM是∠AOC的平分线.ON∠BOC的平分线.

1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?

2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON= (直接写出结果)

3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON﹣∠CON= (直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(

A.,0) B.(1,0) C.,0) D.,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40-30+50-25+25-30+15-28+16-20.

1)球员最后到达的地方在出发点的哪个方向?距出发点多远?

2)球员训练过程中,最远处离出发点多远?

3)球员在一组练习过程中,跑了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为奖励学习之星,准备在某商店购买AB两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.

1)求一件A种文具的价格;

2)根据需要,该校准备在该商店购买AB两种文具共150件.

①求购买AB两种文具所需经费W与购买A种文具的件数a之间的函数关系式;

②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(﹣,0),点B的坐标为(0,3).

(1)求过A,B两点直线的函数表达式;

(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将口ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.

(1)求证:△ABF≌△ECF

(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.

查看答案和解析>>

同步练习册答案