精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.
(1)求抛物线的解析式;
(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.
①当△OPC为等腰三角形时,求点P的坐标;
②求△BOD 面积的最大值,并写出此时点D的坐标.

解:(1)解方程x2﹣2x﹣3=0,得 x1=3,x2=﹣1。
∵m<n,∴m=﹣1,n=3。∴A(﹣1,﹣1),B(3,﹣3)。
∵抛物线过原点,设抛物线的解析式为y=ax2+bx。
,解得:
∴抛物线的解析式为
(2)①设直线AB的解析式为y=kx+b。
,解得:
∴直线AB的解析式为
∴C点坐标为(0,)。
∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x。
∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC。
设P(x,﹣x)。
(i)当OC=OP时,,解得(舍去)。
∴P1)。
(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2)。
(iii)当OC=PC时,由,解得(舍去)。
∴P3)。
综上所述,P点坐标为P1)或P2)或P3)。
②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.

设Q(x,﹣x),D(x,).
S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH
=DQ(OG+GH)
=
=
∵0<x<3,∴当时,S取得最大值为,此时D()。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案