精英家教网 > 初中数学 > 题目详情

【题目】定义:如果一元二次方程满足a+b+c=0,我们称这个方程为凤凰方程.已知是凤凰方程,且有两个相等的实数根,则下列正确的是(  )

A.a=cB.a=bC.b=cD.a=b=c

【答案】A

【解析】

因为方程有两个相等的实数根,所以根的判别式△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0得(-a-c2-4ac=0,化简即可得到ac的关系.

解:∵一元二次方程ax2+bx+c=0a≠0)有两个相等的实数根,
∴△=b2-4ac=0
a+b+c=0,即b=-a-c
代入b2-4ac=0得(-a-c2-4ac=0
即(a+c2-4ac=a2+2ac+c2-4ac=a2-2ac+c2=a-c2=0
a=c
故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PEBC于点EPFDC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EFAH于点G,当点PBD上运动时(不包括BD两点),以下结论:①MF=MC;②AHEF;③AP2=PMPH EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.

(1)根据折线图把下列表格补充完整;

运动员

平均数

中位数

众数

8.5

9

8.5

(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的直径AB6C为圆周上的一点,BC3.过C点作O的切线GE,作ADGE于点D,交O于点F

1)求证:∠ACG=∠B

2)计算线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数图象过ABC三点,点A的坐标为(﹣10),点B的坐标为(40),点Cy轴正半轴上,且ABOC

1)求点C的坐标;

2)求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2-(m+2)x+(2m-1)=0。

(1)求证:方程恒有两个不相等的实数根;

(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,点 D 为边 BC 的点,点 EF 分别是边 ABAC 上两点,且 EFBC,若 AEEBmBDDCn,则( )

A.m1n1,则 2SAEFSABDB.m1n1,则 2SAEFSABD

C.m1n1,则 2SAEFSABDD.m1n1,则 2SAEFSABD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 在平面直角坐标系中,抛物线y=-x2+bx+c经过点ABC,已知A-10),C03).

1)求抛物线的解析式;

2)如图1P为线段BC上一点,过点Py轴的平行线,交抛物线于点D,当CDP为等腰三角形时,求点P的坐标;

3)如图2,抛物线的顶点为EEFx轴于点FN是直线EF上一动点,Mm0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点MN的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20173月起,成都市中心城区居民用水实行以户为单位的三级阶梯收费办法:

I级:居民每户每月用水18吨以内含18吨每吨收水费a元;

第Ⅱ级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第Ⅰ级标准收费,超过部分每吨收水费b元;

第Ⅲ级:居民每户每月用水超过25吨,未超过25吨的部分按照第I、Ⅱ级标准收费,超过部分每吨收水费c元.

设一户居民月用水x吨,应缴水费为y元,yx之间的函数关系如图所示

1)根据图象直接作答:a   b   

2)求当x≥25yx之间的函数关系;

3)把上述水费阶梯收费办法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.(写出过程)

查看答案和解析>>

同步练习册答案