【题目】和中,,,,交于点,.
(1)如图1,求证:;
(2)如图2,若平分,求证:;
(3)若,交于,且为等腰三角形,则______.
【答案】(1)见解析;(2)见解析;(3)或
【解析】
(1)只要证明△ABC≌△ADE(SAS)即可解决问题;
(2)过A作AM⊥BC于M,作AN⊥DE于N,想办法证明△ABO≌△AEO(ASA)即可解决问题;
(3)分两种情形讨论即可解决问题;
(1)证明:设AD交OB于K.
在△ABC和△ADE中
,
∴△ABC≌△ADE(SAS),
∴∠B=∠D,
∵∠AKB=∠DKO,
∴∠BOD=∠BAD=α
(2)过A作AM⊥BC于M,作AN⊥DE于N
∵△ABC≌△ADE,
∴S△ABC=S△ADE,
∴ BCAM=DEAN,
∵BC=DE,
∴AM=AN
∴AO平分∠BOE,
∵AO平分∠DAC,
∴∠DAO=∠CAO,
∴∠BAO=∠EAO
在△ABO和△AEO中,
,
∴△ABO≌△AEO(ASA)
∴AB=AE,
∵AB=AD,AC=AE,
∴AC=AD,
(3)由(2)可知∠AOB=∠AOF,
∴∠AOF≠∠OAF(否则CA∥CB),
∴只有AO=AF或OA=OF,
①当AO=AF时,∠AOF=∠AFO=∠AOB=α+30°,
∴∠AOB+∠AOF+∠FOC=180°,
∴2(α+30)+α=180°,
∴α=40°.
②当OA=OF时,∠OAF=∠OFA=α+30°,
∴∠AOB=∠AOF=180°-2(α+30°),
∴2[180°-2(α+30)]+α=180°,
∴α=20°,
综上所述,α=40°或20°
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC三个内角的平分线交于点O,延长BA到点D,使AD=AO,连接DO,若BD=BC,∠ABC=54,则∠BCA的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD边AD上的一个动点,且与点A、点D不重合,连结BE、CE,过点B作BF∥CE,过点C作CF∥BE,交点为F点,连接AF、DF分别交BC于点G、H,则下列结论错误的是( )
A. GH=BC B. S△BGF+S△CHF=S△BCF
C. S四边形BFCE=ABAD D. 当点E为AD中点时,四边形BECF为菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由
(2)判断此时线段PC和线段PQ的关系,并说明理由。
(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变,设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.
(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;
(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.
①求证:△ABE∽△ACD;
②计算:BD2+CE2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明和哥哥一起骑自行车从家里出发到昌南湖游玩,从家出发0.5小时后到达陶溪川,游玩一段时间后按原速前往昌南湖.小明离家80分钟后,爸爸驾车沿相同路线前往昌南湖,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知爸爸驾车的速度是小明骑车速度的3倍.
(1)小明骑车的速度为_____km/h,爸爸驾车的速度为_____km/h.
(2)小明从家到陶溪川的路程y与时间x的函数关系式为_____,他从陶溪川到昌南湖的路程y与时间x的函数关系式为______,爸爸从家到昌南湖的路程,与时间x的函数关系式为______.
(3)小明从家出发多少小时后被爸爸追上?此时离家多远?
(4)如果小明比爸爸晚10分钟到达昌南湖,那么昌南湖离家有多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.
(1)在图(1)中,△ABC的三边长分别是AB= ,BC= ,AC= .△ABC的面积是 .
(2)已知△PMN中,PM=,MN=2,NP=.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com