精英家教网 > 初中数学 > 题目详情

【题目】如图,第(1)个多边形由正三角形扩展而来,边数记为a3,第(2)个多边形由正方形扩展而来,边数记为a4,……,依此类推,由正n边形扩展而来的多边形的边数记为ann≥3).则当an=90时,n的值是_________

【答案】9

【解析】分析:第一个图形的边长是把正三角形的三边都减去1后,再加上2所得,第二个图形的边长是把正方形的四边都减去1后,再加上3所得,后面都是这个规律,由此列方程求解.

详解:由图可知中:

(1)a3=3(3-1+2)=12;

(2)a4=4(3-1+3)=20;

(3)a5=5(3-1+4)=30;

(4)a6=6(3-1+5)=42;

……

ann(3-1+n-1)=n(n+1).

所以n(n+1)=90,解得n=9n=-10().

故答案为9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度,现将A型冰箱打折出售,商场最少打几折消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个正方体礼盒如图所示,六个面分别写有”“”“”“”“”“”,其中的对面是”,“的对面是”,则它的表面展开图可能是(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】14分)定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.

如图,已知ABC中,AB=BC,C=36°,BA1平分ABC交AC于A1

(1)=AA1A C;

(2)探究:ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)

(3)应用:已知AC=a,作A1B1AB交BC于B1,B1A2平分A1B1C交AC于A2,作A2B2AB交B2,B2A3平分A2B2C交AC于A3,作A3B3AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买AB两种道具.已知购买1A道具比购买1B道具多10元,购买2A道具和3B道具共需要45元.

1)购买一件A道具和一件B道具各需要多少元?

2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.

请问道具A最多购买多少件?

若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yk1xb的图象与反比例函数y (x<0)的图象相交于点A(-1,2)、点B(-4,n).

(1)求此一次函数和反比例函数的表达式;

(2)AOB的面积;

(3)x轴上存在一点P,使PAB的周长最小,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4件同型号的产品中,有1件不合格品和3件合格品.

(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;

(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;

(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.

1)如图1,已知AEBE分别是∠BAO和∠ABO角的平分线,点AB在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.

2)如图2,已知AB不平行CDADBC分别是∠BAP和∠ABM的角平分线,又DECE分别是∠ADC和∠BCD的角平分线,点AB在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.

3)如图3,延长BAG,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于EF,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.

查看答案和解析>>

同步练习册答案