| A. | $\frac{1}{3}$a2 | B. | $\frac{1}{4}$a2 | C. | $\frac{1}{2}$a2 | D. | $\frac{1}{4}$a |
分析 扇形的半径交AD于E,交CD于F,连结OD,如图,利用正方形的性质得OD=OC,∠COD=90°,∠ODA=∠OCD=45°,再利用等角的余角相等得到∠EOD=∠FOC,于是可证明△ODE≌△OCF,得到S△ODE=S△OCF,所以S阴影部分=S△DOC=$\frac{1}{4}$S正方形ABCD=$\frac{1}{4}$a2.
解答 解:扇形的半径交AD于E,交CD于F,连结OD,如图,
∵四边形ABCD为正方形,
∴OD=OC,∠COD=90°,∠ODA=∠OCD=45°,![]()
∵∠EOF=90°,即∠EOD+∠DOF=90°,
∠DOF+∠COF=90°,
∴∠EOD=∠FOC,
在△ODE和△OCF中,
$\left\{\begin{array}{l}{∠ODE=∠OCF}\\{OD=OC}\\{∠EOD=∠COF}\end{array}\right.$,
∴△ODE≌△OCF,
∴S△ODE=S△OCF,
∴S阴影部分=S△DOC=$\frac{1}{4}$S正方形ABCD=$\frac{1}{4}$a2.
故选B.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.
科目:初中数学 来源: 题型:选择题
| A. | 扩大为原来的2倍 | B. | 缩小为原来的$\frac{1}{2}$ | C. | 扩大为原来的5倍 | D. | 保持不变 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x<-1或x>2 | B. | x<-1或x>5 | C. | -1<x<5 | D. | -1<x<2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com