精英家教网 > 初中数学 > 题目详情

【题目】如图,点ABx轴的上方,∠AOB90°OAOB分别与函数的图象交于AB两点,以OAOB为邻边作矩形AOBC.当点Cy轴上时,分别过点A和点BAEx轴,BFx轴,垂足分别为EF,则_______

【答案】4

【解析】

根据题意四边形AOBC是矩形,得到OF=OE,因为OA、OB分别与函数y= 、y=- 的图象交于A、B两点,得到AE= , BF= ,即可解答

∵AE⊥x轴,BF⊥x轴,

∴AE∥y轴∥BF,

∵四边形AOBC是矩形,

∴△AOC≌△BCO,

COFO= COOE,

∴OF=OE,

∵OA、OB分别与函数y= 、y=- 的图象交于A、B两点,

∴ BFOF=2, AEOE=8

∴AE= , BF=

故答案为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABD中,BCAD边上的高线,tanBAD1,在BC上截取CGCD,连结AG,将△ACG绕点C旋转,使点G落在BD边上的F处,A落在E处,连结BE,若AD4tanD3,则△CFD和△ECF的面积比为___BE长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来一些搜题软件(作业帮,小猿搜题等)陆续进入学生视野,并受到学生的追捧;只需轻松一拍,答案立马浮现,但各界人士关于学生使用搜题软件的利弊的讨论从未停息,某校为了解本校学生使用搜题软件的情况(分为“总是、较多、较少、不用四种情况),就“是否会使用搜题软件辅助完成作业”随机在九年级抽取了部分学生进行调查,绘制成如下不完整的统计图请根据图中信息,回答下列问题:

1)本次接受调查的学生有   名,图1中的a   b   

2)“较少”对应的圆心角的度数为   

3)请补全条形统计图;

4)若该校九年级共有1500名学生,请估计其中使用搜题软件辅助完成作业为“较多”的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是弧的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.

⑴求证:AC=CD.

⑵若OB=2,求BH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1Pmn)在抛物线y=ax2-4axa0)上,E为抛物线的顶点.

1)求点E的坐标(用含a的式子表示);

2)若点P在第一象限,线段OP交抛物线的对称轴于点C,过抛物线的顶点Ex轴的平行线DE,过点Px轴的垂线交DE于点D,连接CD,求证:CDOE

3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于AB两点,平移后的抛物线的顶点为QP是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过QDx轴、y轴的平行线交于点E,且∠EPQ=2APQ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca0),自变量x与函数y的对应值如下表:

下列说法正确的是(

A. 抛物线的开口向下

B. x-3时,yx的增大而增大

C. 二次函数的最小值是-2

D. 抛物线的对称轴是直线x=-2.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,A04),B80),C84).

1)试说明四边形AOBC是矩形.

2)在x轴上取一点D,将△DCB绕点C顺时针旋转90°得到△D'CB'(点D'与点D对应).

①若OD3,求点D'的坐标.

②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AB=ACAC交⊙O于点EBC交⊙O于点DFCE的中点,连接DF.则下列结论错误的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切线

查看答案和解析>>

同步练习册答案