精英家教网 > 初中数学 > 题目详情

【题目】如图1Pmn)在抛物线y=ax2-4axa0)上,E为抛物线的顶点.

1)求点E的坐标(用含a的式子表示);

2)若点P在第一象限,线段OP交抛物线的对称轴于点C,过抛物线的顶点Ex轴的平行线DE,过点Px轴的垂线交DE于点D,连接CD,求证:CDOE

3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于AB两点,平移后的抛物线的顶点为QP是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过QDx轴、y轴的平行线交于点E,且∠EPQ=2APQ,求点P的坐标.

【答案】(1) E(2,﹣4a);(2)见解析;(3) P(2,+1).

【解析】

(1)将原式提取公因式然后化简即可解答

(2)设直线OE的解析式为:y=k x,把E点代入可得直线OE的解析式为:y=﹣2ax,由P(m,n)得直线OP的解析式为:y=,得到C(2,),然后设直线CD的解析式为:y=kx+b,得到:k=﹣2a,即可解答

(3)当a=1时,抛物线解析式为:y=x2﹣4x,向上平移3个单位得新的抛物线解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,然后设P(2,t),可得AP的解析式为:y=tx﹣t,D(3+t,t2+2t),Q(2,﹣1),E(3+t,﹣1),再设PE交x轴于F,即可解答

解:(1)y=ax2﹣4ax=a(x2﹣4x+4﹣4)=a(x﹣2)2﹣4a,

∴E(2,﹣4a);

(2)设直线OE的解析式为:y=kx,

把E(2,﹣4a)代入得:2k=﹣4a,

k=﹣2a,

∴直线OE的解析式为:y=﹣2ax,

由P(m,n)得直线OP的解析式为:y=

∴当x=2时,y= ,即C(2,),

∵D(m,﹣4a),

设直线CD的解析式为:y=kx+b,

将点D和C的坐标代入得: (n=am2﹣4am),

解得:k=﹣2a,

根据两直线系数相等,

∴OE∥CD;

(3)如图2,当a=1时,抛物线解析式为:y=x2﹣4x,

向上平移3个单位得新的抛物线解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,

∴Q(2,﹣1),A(1,0),B(3,0),

设P(2,t),

可得AP的解析式为:y=tx﹣t,

联立方程组为: ,解得:

∴D(3+t,t2+2t),

∵Q(2,﹣1),

∴E(3+t,﹣1),

∴PQ=QE=t+1,

∴∠EPQ=45°,

∵∠EPQ=2∠APQ,

∴∠APQ=22.5°,

设PE交x轴于F,

∵∠DEP=45°,

∴ME=FM=1,

∴∠FPA=∠PAF=67.5°,

∴PF=AF=t+1,

∵FP= t,

t=t+1,

t= +1,

∴P(2, +1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0

1)若二次函数ymx2+nx+1经过点(20),(31),试分别求出两个函数的解析式.

2)若一次函数ymx+n经过点(20),且图象经过第一、三象限.二次函数ymx2+nx+1经过点(ay1)和(a+1y2),且y1y2,请求出a的取值范围.

3)若二次函数ymx2+nx+1的顶点坐标为Ahk)(h0),同时二次函数yx2+x+1也经过A点,已知﹣1h1,请求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)问题发现:如图1,在RtABC中,ABACDBC边上一点(不与点BC重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BDCE的数量关系是   ,位置关系是   

2)探究证明:如图2,在RtABCRtADE中,ABACADAE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段ADBDCD之间的等量关系,并证明;

3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC45°.若BF13CF5,请直接写出AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级(1)班班主任对本班学生进行了我最喜欢的课外活动的调查,并将调查结果分为书法和绘画类(记为A)、音禾类(记为B)、球类(记为C)、其他类(记为D).根据调査结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调査情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列同题:

1)七年级(1)班学生总人数为______人,扇形统计图中D类所对应扇形的圆心角为______度,请补全条形统计图;

2)学校将举行书法和绘画比赛,每班需派两名学生参加,A4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.

3)如果全市有5万名初中生,那么全市初中生中,喜欢球类的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABx轴的上方,∠AOB90°OAOB分别与函数的图象交于AB两点,以OAOB为邻边作矩形AOBC.当点Cy轴上时,分别过点A和点BAEx轴,BFx轴,垂足分别为EF,则_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在平面直角坐标系xOy中,抛物线y=y轴交于点A,顶点为B,直线ly=-x+b经过点A,与抛物线的对称轴交于点C,点P是对称轴上的一个动点,若AP+PC的值最小,则点P的坐标为(

A. 31

B. 3

C. 3

D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了庆祝中国人民海军成立70周年,某市举行了海军知识竞赛,为了了解竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示。请根据图表信息解答下列问题:

(1)在表中:m=___n=___

(2)补全频数分布直方图;

(3)若成绩在90分以上(含90分)能获奖,请你估计该是所有参赛的4500名中学生中大约有多少人能获奖.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax﹣1的图象与反比例函数y=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=

(1)求a,k的值及点B的坐标;

(2)观察图象,请直接写出不等式ax﹣1≥的解集;

(3)在y轴上存在一点P,使得PDCODC相似,请你求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春晓中学为开展校园科技节活动,计划购买A型、B型两种型号的航模.若购买8A型航模和5B型航模需用2200元;若购买4A型航模和6B型航模需用1520元.求AB两种型号航模的单价分别是多少元.

查看答案和解析>>

同步练习册答案