精英家教网 > 初中数学 > 题目详情

【题目】如图,某日在我国某岛附近海域有两艘自西向东航行的海监船A、B,船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留小数点后一位)
参考数据: ≈1.414, ≈1.732, ≈2.236.

【答案】解:解:过点B作BD⊥AC于点D,

由题意可知:∠BAC=45°,∠ABC=90°+15°=105°,

则∠ACB=180°﹣∠BAC﹣∠ABC=30°,

在Rt△ABD中,BD=ABsin∠BAD=20× =10

在Rt△BCD中,BC= =20

答:此时船C与船B的距离是20 海里.


【解析】抓住已知某一时刻两海监船同时测得在A的东北方向,即可添加辅助线过点B作BD⊥AC于点D,得到Rt△BDC和等腰Rt△ABD,根据AB的长,就可求出BD的长,然后在Rt△BCD中,利用解直角三角形就可求出CB的长。
【考点精析】认真审题,首先需要了解解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)),还要掌握关于方向角问题(指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.

1)作ABC关于点C成中心对称的A1B1C1

2)将A1B1C1向右平移4个单位,作出平移后的A2B2C2

3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)过点CAB的平行线CD

(2)过点CAB的垂线,垂足为E

(3)线段CE的长度是点C到直线__________的距离;

(4)连接CACB,在线段CACBCE中,线段__________最短,理由:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°AC=BCCHABC斜边上的中线,点FCH上一点,连接BF并延长交AC于点D,过点AAEAC,连接CEDE,若∠ACE=2ABFCE=13CD=8,则CDE的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中,共有“一白三黑”四个围棋子,其除颜色外无其他区别.
(1)随机地从盒子中取出1子,则提出的是白子的概率是多少?
(2)随机地从盒子中取出1子,不放回再取出第二子,请用画树状或列表的方式表示出所有可能的结果,并求出恰好取出“一黑一白”的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A,B,D三点的坐标分别是A(﹣1,0),B(﹣l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D,M,N.

(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE﹣QC|最大?并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1.求 度数.

小明的思路是:如图2,过 ,通过平行线性质,可得

问题迁移:

1)如图3,点 在射线 上运动,当点 两点之间运动时, 之间有何数量关系?请说明理由;

2)在(1)的条件下,如果点 两点外侧运动时(点 与点 三点不重合),请你直接写出 间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,E,F分别是边CD,DA上的点,且CE=DF,AE与BF交于点M.求证:AE⊥BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,四边形中,

1)动点出发,以每秒1个单位的速度沿路线运动到点停止,设运动时间为的面积为关于的函数图象如图②所示,求的长.

2)如图③动点从点出发,以每秒2个单位的速度沿路线运动到点停止,同时,动点从点出发,以每秒5个单位的速度沿路线运动到点停止,设运动时间为,当点运动到边上时,连接,当的面积为8时,求的值.

查看答案和解析>>

同步练习册答案