精英家教网 > 初中数学 > 题目详情

【题目】(1)过点CAB的平行线CD

(2)过点CAB的垂线,垂足为E

(3)线段CE的长度是点C到直线__________的距离;

(4)连接CACB,在线段CACBCE中,线段__________最短,理由:______

【答案】(1)见解析;(2)见解析;(3)AB(4) CE,点到直线的距离垂线段最短.

【解析】

(1)过点C直接画出AB平行线即可;

(2)过点C AB作垂线即可,注意要标上垂直符号;

(3)由点C到直线AB的距离是指点C到直线AB的垂线段CE的长度,据此即可解题;

(4)由点到直线的距离垂线段最短可知,CE最短.

解:(1) 过点C直接画出AB平行线,如下图中红色线所示;

(2) 过点C AB作垂线,标上垂直符号,如下图中蓝色线所示:

(3)由点到直线的距离的定义知:

C到直线AB的距离是垂线段CE的长度.

故答案为:AB.

(4) 由点到直线的距离垂线段最短可知垂线段CE最短.

故答案为:CE,点到直线的距离垂线段最短.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知n边形的内角和θ=n-2×180°.

1甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;

2n边形变为n+x边形,发现内角和增加了360°,用列方程的方法确定x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,圆锥的母线长6cm,底面半径是3cm,在B处有一只蚂蚁,在AC中点P处有一颗米粒,蚂蚁从B爬到P处的最短距离是( )

A.3 cm
B.3 cm
C.9cm
D.6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1= x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣ ,0).

(1)求二次函数的最大值;
(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程 =0的根,求a的值;
(3)若点F、G在图象C′上,长度为 的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图RtABC中∠BAC=90°,AB=ACDE是斜边BC上两点,且∠DAE=45°,将ADC绕点A顺时针旋转90°后,得AFB,连接EF,下列结论:①△AED≌△AEF②△ABC的面积等于四边形AFBD的面积;③BE+DC=DEBE2+DC2=DE2⑤∠DAC=22.5°,其中正确的是(  )

A. ①②④B. ③④⑤C. ①③④D. ①②⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某日在我国某岛附近海域有两艘自西向东航行的海监船A、B,船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留小数点后一位)
参考数据: ≈1.414, ≈1.732, ≈2.236.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A=∠C90°BE平分∠ABCDF平分∠CDA

(1)求证:BEDF

(2)若∠ABC56°,求∠ADF的大小.

查看答案和解析>>

同步练习册答案