【题目】如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0,).
(1)求∠BAO的度数;
(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?
(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.
【答案】(1) ∠BAO=60°;(2) S1=S2;(3) S1=S2不发生变化;理由见解析.
【解析】
试题分析:(1)先求出OA,OB,再利用锐角三角函数即可得出结论;
(2)根据等边三角形的性质可得AO=AA',再根据直角三角形30°角所对的直角边等斜边的一半求出AO=AB,然后求出AO=AA’,,然后再根据等边三角形的性质求出点O到AB的距离等于点A'到AO的距离,然后根据等底等高的三角形的面积相等解答;
(3)根据旋转的性质可得BO=OB',AA'=OA',再求出∠AON=∠A'OM,然后再证明ΔAON≌ΔA'OM,可得AN=A'M,然后利用等底等高的三角形面积相等证明.
试题解析:(1)∵A(﹣1,0),B(0, ),
∴OA=1,OB=,
在Rt△AOB中,tan∠BAO==,
∴∠BAO=60°;
(2)∵∠BAO=60°,∠AOB=90°,
∴∠ABO=30°,
∴CA'=AC=AB,
∴OA'=AA'=AO,
根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,
∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),
即S1=S2.
(3)S1=S2不发生变化;
理由:如图,过点'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,
∵△A'B'O是由△ABO绕点O旋转得到,
∴BO=OB',AO=OA',
∵∠AON+∠BON=90°,∠A'OM+∠BON=180°﹣90°=90°,
∴∠AON=∠A'OM,
在△AON和△A'OM中,
,
∴△AON≌△A'OM(AAS),
∴AN=A'M,
∴△BOA'的面积和△AB'O的面积相等(等底等高的三角形的面积相等),
即S1=S2.
科目:初中数学 来源: 题型:
【题目】我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数分别是(101)2=1×22+0×21+1=4+0+1=5,(1011)2=1×23+0×22+1×21+1=1l.按此方式,将二进制(10110)2换算成十进制数的结果是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有下列说法:
①有一个角为60°的等腰三角形是等边三角形;
②三边长为 、 、3的三角形为直角三角形;
③等腰三角形的两边长为3、4,则等腰三角形的周长为10;
④一边上的中线等于这边长的一半的三角形是等腰直角三角形.
其中正确的个数是( )
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
设在同一家复印店一次复印文件的页数为(为非负整数).
(1)根据题意,填写下表:
一次复印页数(页) | 5 | 10 | 20 | 30 | … |
甲复印店收费(元) | 2 | … | |||
乙复印店收费(元) | … |
(2)设在甲复印店复印收费元,在乙复印店复印收费元,分别写出关于的函数关系式;
(3)当时,顾客在哪家复印店复印花费少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是( )
A.10
B.15
C.20
D.30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,坐标平面上,△ABC≌△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC,若A、B、C的坐标分别为(﹣3,1)、(﹣6,﹣3)、(﹣1,﹣3),D、E两点在y轴上,则F点到y轴的距离为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com