【题目】如图,在△ABC中,∠C=90°,AC=6,BC=8,P是线段BC上任意一点,以点P为圆心PB为半径的圆与线段AB相交于点Q(点Q与点A、B不重合),∠CPQ的角平分线与AC相交于点D.
(1)如果DQ=PB,求证:四边形BQDP是平行四边形;
(2)设PB=x,△DPQ的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如果△ADQ是以DQ为腰的等腰三角形,求PB的长.
【答案】(1) 见解析;(2); (3)4或或
【解析】
(1)根据角平分线的性质得到∠CPD=∠QPD,由DQ=PB=PQ得到∠QDP=∠QPD推出DQ∥BP,再根据DQ=BP推出四边形BQDP是平行四边形;
(2)先根据勾股定理求出AB=10,过点P作PH⊥AB于H,证明△BHP∽△BCA,求出BH=,HP=,根据同位角相等证明PD∥AB得到CD=,过点Q作QE⊥AC于E,利用三角函数求出QE=,再根据即可求出函数解析式,根据图形中各边都大于0得到不等式组求出x的取值范围;
(3)设PB=a,过点P作PH⊥AB,由(2)可知BQ=,则AQ=10-,分三种情况:①当AD=DQ时,②当AQ=DQ时,③当AD=AQ=10-时,分别求出a即可.
(1)∵∠CPQ的角平分线与AC相交于点D,
∴∠CPD=∠QPD,
∵DQ=PB=PQ,
∴∠QDP=∠QPD,
∴∠QDP=∠CPD,
∴DQ∥BP,
∵DQ=BP,
∴四边形BQDP是平行四边形;
(2)∵∠C=90°,AC=6,BC=8,
∴AB=10,
过点P作PH⊥AB于H,
∴∠BHP=∠C=90°,
∵∠B=∠B,
∴△BHP∽△BCA,
∴,
∴,
∴BH=,HP=,
∴BQ=2BH=,
∵PB=PQ,
∴∠B=∠BQP,
∵∠CPQ=2∠CPD=∠B+∠BQP,
∴∠CPQ=∠B,
∴PD∥AB,
∴,
∴,
∴CD=,
∴,
过点Q作QE⊥AC于E,
∵AQ=10-,
∴QE=,
∴
=
=
∵,解得,
∴;
(3)设PB=a,
过点P作PH⊥AB,由(2)可知BQ=,∴AQ=10-,
①当AD=DQ时,如图,过点D作DF⊥AB于F,则AF=,
∴,
∴CD=,
∵PD∥AB,
∴,
∴,
解得a=4,
②当AQ=DQ时,过点Q作QM⊥AC于M,
∴AM===,
∴AD=2AM=,
∴CD=6-AD=,
∵PD∥AB,
∴,
∴,
解得a=;
③当AD=AQ=10-时,则CD=6-AD=-4,
∵PD∥AB,
∴,
∴,
解得a=.
科目:初中数学 来源: 题型:
【题目】边长为4的正方形ABCD中,点E是BC边上的一个动点,连接DE,交AC于点N,过点D作DF⊥DE,交BA的延长线于点F,连接EF,交AC于点M.
(1)判定△DFE的形状,并说明理由;
(2)设CE=x,△AMF的面积为y,求y与x之间的函数关系式;并求出当x为何值时y有最大值?最大值是多少?
(3)随着点E在BC边上运动,NA·MC的值是否会发生变化?若不变,请求出NA·MC的值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着新冠肺炎在全球蔓延,粮食安全与国际粮食贸易等问题再次引起广泛的关注,2020年4月4日,国务院联防联控机制召开新闻发布会,介绍疫情期间粮食供给和保障工作情况,农业农村部发展规划司魏百刚给出了定心丸:“我国粮食连年丰收,已连续5年稳定在1.3万亿斤以上,口粮保障绝对安全”,1.3万亿用科学记数法表示为( ).
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】假设某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为90%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,6小时车库恰好停满;如果开放3个进口和2个出口,3小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,因为车库改造,只能开放1个进口和1个出口,则从早晨7点开始经过______小时车库恰好停满.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子里装有两个红球,两个白球和一个蓝球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到的球的颜色能配成紫色(红色和蓝色能配成紫色)的概率为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A 1.5小时以上;B 1~1.5小时;C 0.5~1小时;D 0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图1中将选项B的部分补充完整;
(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.
(1)发现:当正方形AEFG绕点A旋转,如图②所示.
①线段DG与BE之间的数量关系是 ;
②直线DG与直线BE之间的位置关系是 ;
(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,上述结论是否成立,并说明理由.
(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com