精英家教网 > 初中数学 > 题目详情

【题目】北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于AB两点,拱高为78(即最高点OAB的距离为78),跨径为90(AB=90),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )

A.B.C.D.

【答案】B

【解析】

设抛物线解析式为y=ax2,由已知可得点B坐标为(45-78),利用待定系数法进行求解即可.

∵拱高为78(即最高点OAB的距离为78),跨径为90(AB=90),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,

设抛物线解析式为y=ax2,点B(45-78)

∴-78=452a

解得:a=

∴此抛物线钢拱的函数表达式为

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,的增大而增大;④一元二次方程的两根分别为;⑤;⑥若为方程的两个根,则,其中正确的结论有(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段ABCD分别表示甲乙两建筑物的高,BAADCDDA,垂足分别为AD.从D点测到B点的仰角α60°,从C点测得B点的仰角β30°,甲建筑物的高AB=30

(1)求甲、乙两建筑物之间的距离AD

(2)求乙建筑物的高CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABOD的顶点A是函数y=-x-(k+1)的图象与函数y=在第二象限的图象的交点,B,D两点在坐标轴上,且长方形ABOD的面积为3.

(1)求两函数的表达式;

(2)求两函数图象的交点A,C的坐标;

(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价(万元)与产量x(吨)之间的关系如图所示.已知草莓的产销投入总成本(万元)与产量x(吨)之间满足

(1)直接写出草莓销售单价(万元)与产量(吨)之间的函数关系式;

(2)求该合作社所获利润(万元)与产量(吨)之间的函数关系式;

(3)为提高农民种植草莓的积极性,合作社决定按万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润(万元)不低于万元,产量至少要达到多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】扬州漆器名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

(1)求之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

1)这次活动共调查了多少人;

2)将条形统计图补充完整;

3)在一次购物中,小明和小亮都想从微信支付宝银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把某矩形纸片ABCD沿EFGH折叠(点EHAD边上,点FGBC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若的面积为4的面积为1,则矩形ABCD的面积等于_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了矩形后,数学活动小组开展了探究活动.如图1,在矩形中,,点上,先以为折痕将点往右折,如图2所示,再过点,垂足为,如图3所示.

1)在图3中,若,则的度数为______的长度为______.

2)在(1)的条件下,求的长.

3)在图3中,若,则______.

查看答案和解析>>

同步练习册答案