精英家教网 > 初中数学 > 题目详情
12.计算:tan45°sin45°-2sin30°cos45°+tan30°.

分析 利用特殊角的三角函数值直接代入求出答案.

解答 解:原式=1×$\frac{\sqrt{2}}{2}$-2×$\frac{1}{2}$×$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{3}$
=$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{3}$
=$\frac{\sqrt{3}}{3}$.

点评 此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.一个含30°角的三角尺与一张圆形硬纸片如图放置在桌面上,圆心O在斜边AB上,三角尺的两直角边与圆相切,切点分别为M、N.若AC=3+$\sqrt{3}$,则阴影部分的面积为(  )
A.2$\sqrt{3}$-πB.$\sqrt{3}$-$\frac{1}{6}$πC.$\sqrt{3}$-$\frac{2}{3}$πD.$\frac{9\sqrt{3}}{2}$-$\frac{3}{2}$π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,OA=OB=OC=8,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的$\frac{1}{4}$.
(1)求点D的坐标;
(2)过点C作CE⊥AD,交AB交于F,垂足为E.求证:OF=OG;
(3)若点F的坐标为($\frac{8}{7}$,0),在第一象限内是否存在点P,使△CFP是以CF为腰长的等腰直角三角形?若存在,请求出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图所示,在平面直角坐标系xOy中,半径为1的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为2或4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:

(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点P在线段AB上以每秒1个单位的速度从点B向点A运动,同时点Q在线段AC上以同样的速度从点A向点C运动,运动的时间用t(单位:秒)表示.
(1)直接写出线段AB的长为5;
(2)经过t秒时,AQ的长为t,AP的长为5-t(用含t的代数式表示);
(3)求当t为何值时,△APQ与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠B=60°,∠C=70°,求∠EDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.抛物线y=2(x-2)2-6的顶点坐标是(2,-6).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③b=-2a;④9a+3b+c<0. 其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案