精英家教网 > 初中数学 > 题目详情

【题目】安全教育是学校必须开展的一项重要工作.某校为了了解家长和学生参与暑期安全知识学习的情况,进行了网上测试,并在本校学生中随机抽取部分学生进行调查.若把参与测试的情况分为类情形:.仅学生自己参与;.家长和学生一起参与;.仅家长自己参与;.家长和学生都未参与.根据调查情况,绘制了以下不完整的统计图.请根据图中提供的信息,解答下列问题:

在这次抽样调查中,共调查了 名学生;

补全条形统计图,并计算扇形统计图中类所对应扇形的圆心角的度数;

根据抽样调查结果,估计该校名学生中家长和学生都未参与的人数.

【答案】(1)400;(2)补全图形见解析;54°;(3)150名

【解析】

1)根据A类的人数和所占的百分比可以求得本次调查的人数;

2)根据(1)中的结果可以求得B类学生数,从而可以将条形统计图补充完整,进而求得扇形统计图中C类所对应扇形的圆心角的度数;

3)根据统计图中的数据可以求得该校3000名学生中家长和学生都未参与的人数.

解:(1) 在这次抽样调查中,共调查了80÷20%=400(人),

故答案为:400;

类的人数为(名),补图如下:

类所对应扇形的圆心角度数为

估计该校名学生中家长和学生都未参与的人数为(名)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线ykx+b经过点A02),B(﹣40)和抛物线yx2

1)求直线的解析式;

2)将抛物线yx2沿着x轴向右平移,平移后的抛物线对称轴左侧部分与y轴交于点C,对称轴右侧部分抛物线与直线ykx+b交于点D,连接CD,当CDx轴时,求平移后得到的抛物线的解析式;

3)在(2)的条件下,平移后得到的抛物线的对称轴与x轴交于点EP为该抛物线上一动点,过点P作抛物线对称轴的垂线,垂足为Q,是否存在这样的点P,使以点EPQ为顶点的三角形与AOB相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57cos35°≈0.82tan35°≈0.70≈1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解七、八年级学生对防溺水安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:

a.七年级成绩频数分布直方图:

b.七年级成绩在这一组的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年级成绩的平均数、中位数如下:

年级

平均数

中位数

76.9

m

79.2

79.5

根据以上信息,回答下列问题:

1)在这次测试中,七年级在80分以上(含80分)的有   人;

2)表中m的值为   

3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;

4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形的直角顶点在坐标原点,OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从点看一山坡上的电线杆,观测点的仰角是,向前走到达点, 测得顶端点和杆底端点的仰角分别是,则该电线杆的高度(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于点,与交于点,与轴交于点轴于点,且

1)求一次函数、反比例函数的解析式;

2)根据图像直接写出的取值范围;

3)点为反比例函数图象上使得四边形为菱形的一点,点轴上的一动点,当最大时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:

根据上述信息,解答下列问题:

(1)抽取的学生人数为   

(2)将两幅统计图补充完整;

(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

上课时孙老师提出这样一个问题:对于任意实数,关于的不等式恒成立,求的取值范围.

小明的思路是:原不等式等价于,设函数,画出两个函数的图象的示意图,于是原问题转化为函数的图象在的图象上方时的取值范围.

请结合小明的思路回答:

对于任意实数,关于的不等式恒成立,则的取值范围是_____

参考小明思考问题的方法,解决问题:

关于的方程范围内有两个解,求的取值范围.

查看答案和解析>>

同步练习册答案