精英家教网 > 初中数学 > 题目详情

一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为(  )

 

A.

11

B.

12

C.

13

D.

14

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是(  )

 

A.

(4,﹣3)

B.

(﹣4,3)

C.

(0,﹣3)

D.

(0,3)

查看答案和解析>>

科目:初中数学 来源: 题型:


已知双曲线y=(x>0),直线l1:y﹣=k(x﹣)(k<0)过定点F且与双曲线交于A,B两点,设A(x1,y1),B(x2,y2)(x1<x2),直线l2:y=﹣x+

(1)若k=﹣1,求△OAB的面积S;

(2)若AB=,求k的值;

(3)设N(0,2),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(x1,y1),B(x2,y2)则A,B两点间的距离为AB=

 

查看答案和解析>>

科目:初中数学 来源: 题型:


化简:+

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.

(1)填空:∠AOB= 45 °,用m表示点A′的坐标:A′( m  ﹣m );

(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;

(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:

①求a,b,m满足的关系式;

②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是(  )

 

A.

[x]=x(x为整数)

B.

0≤x﹣[x]<1

 

C.

[x+y]≤[x]+[y]

D.

[n+x]=n+[x](n为整数)

 

查看答案和解析>>

科目:初中数学 来源: 题型:


在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是         .(填A′D、A′E、A′F)

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为(  )

 

A.

140

B.

70

C.

35

D.

24

 

查看答案和解析>>

科目:初中数学 来源: 题型:


某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).

规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.

如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:

(1)小亮掷得向上一面的点数为奇数的概率是多少?

(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)

查看答案和解析>>

同步练习册答案