【题目】如图,矩形的对角线相交于点,,.
求证:四边形是菱形;
若,菱形的面积为,求的长.
【答案】(1)证明见解析;(2)
【解析】
(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形;
(2)利用矩形和菱形的性质易得OM=,CM=CD,OM=BC,再利用菱形的面积公式求得OM,即可得出结论.
(1)∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形.
∵四边形ABCD是矩形,∴BD=AC,DO=BO,AO=CO,∴OD=OC,∴四边形CODE是菱形.
(2)连接OE.
∵四边形CODE是菱形,∴OE⊥CD,OM=,CM=CD.
∵四边形ABCD是矩形,∴BC⊥CD,∴OM∥BC,∴OM=BC.
∵ABCD是矩形,∴AB∥CD,∴∠OCM=∠BAC.
∵tan∠BAC=,∴tan∠OCM==,设OM=3x,则CM=2x.
∵菱形OCED的面积为12,∴6x4x=12,∴x=±(负值舍去),∴OM=,∴BC=3.
科目:初中数学 来源: 题型:
【题目】如图1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由B点向点D运动。它们的运动时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图2,将图1中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变。设点Q的运动速度为每秒x个单位,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:DF=CF.
(2)若∠AOB=60,请你探究OE,EF之间有什么数量关系?并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AD是BC边上的高,CE平分∠ACB,AD与CE相交于点F.∠B=65°,∠AFC=120°,求∠BAD和∠ACB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,连接AC、BD交于点M.
(1)如图1,若∠AOB=∠COD=40°:
①AC与BD的数量关系为 ;
②∠AMB的度数为 ;
(2)如图2,若∠AOB=∠COD=90°:
①判断AC与BD之间存在怎样的数量关系?并说明理由;
②求∠AMB的度数;
(3)在(2)的条件下,当∠CAB=30°,且点C与点M重合时,请直接写出OD与OA之间存在的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com