【题目】如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三个顶点的距离相等,若∠A=70°,则∠BOC=_____________.
【答案】140°
【解析】
连接AO并延长,与BC边交于D,把要求的角分为∠BOC=∠BOD+∠COD通过三角形外角等于不相邻的两个内角之和,转化为∠BOC=∠BAO+∠ABO+∠CAO+∠ACO,根据题意得到∠BAO+∠CAO=70°∠ABO+∠ACO=70°,代入即可求出∠BOC.
解:如图,连接AO并延长,与BC边交于D
∵点O到△ABC三个顶点的距离相等
∴ AO=BO=CO
∴∠BAO=∠ABO, ∠CAO=∠ACO
∵∠BAC=∠BAO+∠CAO=70°∠BOC=∠BOD+∠COD
∴∠ABO+∠ACO=70°
∵ ∠BOC=∠BOD+∠COD
∴∠BOC=∠BOD+∠COD=∠BAO+∠ABO+∠CAO+∠ACO=70°+70°=140°
∴∠BOC=140°
故答案是140°.
科目:初中数学 来源: 题型:
【题目】如图1,、两点的坐标分别为,,且满足,的坐标为
(1)判断的形状.
(2)动点从点出发,以个单位/的速度在线段上运动,另一动点从点出发,以个单位/的速度在射线上运动,运动时间为.
①如图2,若,直线交轴于,当时,求的值.
②如图3,若,当运动到中点时,为上一点,连,作交于.试探究和的数量关系,并给出证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,,,垂足为点,是外角的平分线,,垂足为点,连接交于点.
求证:四边形为矩形;
当满足什么条件时,四边形是一个正方形?并给出证明.
在的条件下,若,求正方形周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
已知:如图(1),在平面直角坐标系中,点,,分别在坐标轴上,且,的面积为,点从点出发沿轴负方向以个单位长度/秒的速度向下运动,连接,,点为上的中点.
(1)直接写出坐标___________,___________,___________.
(2)设点运动的时间为秒,问:当与垂直且相等时,求此时的值?并说明理由.
(3)如图(2),在第四象限内有一动点,连接,,,点在第四象限内运动,当,判断是否平分,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,为的中点,过点且分别交于,交于,点是的中点,且,则下列结论:;;四边形为菱形;.其中正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com