【题目】如图1,、两点的坐标分别为,,且满足,的坐标为
(1)判断的形状.
(2)动点从点出发,以个单位/的速度在线段上运动,另一动点从点出发,以个单位/的速度在射线上运动,运动时间为.
①如图2,若,直线交轴于,当时,求的值.
②如图3,若,当运动到中点时,为上一点,连,作交于.试探究和的数量关系,并给出证明.
【答案】(1)为等腰三角形;(2)①6.5s;②AM=CN,证明见解析.
【解析】
(1)作CD⊥AB于D,根据非负数的性质求出a、b的值,根据A、B、C的坐标可得AD=DB,根据线段垂直平分线的性质即可得为等腰三角形;
(2)①作PE∥BC交AB于E,证明△PEH≌△QBH,则PE=BQ,根据等腰三角形及平行线的性质∠PEA=∠PAE,得出PA=BQ,根据线段的相等关系列出关于t的方程,解方程即可;
②延长CM交AB于F,先由点C、M的坐标得出CM⊥AB,根据坐标求出AF=CF=BF,推出∠ACB=90°,可求得∠CAB=∠ABC=∠ACF=45°,证出△BCN≌△CAM即可得出结论.
解:(1)作CD⊥AB于D,
∵,
∴a+2=0,b-8=0,
∴a=-2,b=8,
∵的坐标为,
∴OD=3,
∴AD=BD=5,
∴CD为线段AB的垂直平分线,
∴AC=BC,
∴为等腰三角形;
(2)①作PE∥BC交AB于E,
∵PE∥BC,
∴∠EPH=∠BQH,∠PEA=∠ABC,
又∵,∠EHP=∠BHQ,
∴△PEH≌△QBH,
∴PE=BQ,
∵AC=BC,
∴∠CAB=∠ABC,
∴∠CAB=∠PEA,
∴PA=PE,
∴PA=BQ,
由题意得:PA=t,CQ=3t,,
∴t=3t-13,解得:t=6.5s;
②AM=CN
证明:延长CM交AB于F,
∵C(3,5),
∴CM⊥AB,M(3,0),CF=5,
∵A(-2,0),B(8,0),
∴AF=CF=BF,
∴∠CAF=∠ACF,∠BCF=∠CBF,
∴∠ACB=90°,
∵AC=BC,
∴∠CAB=∠ABC=∠ACF=45°,
∵,∠ACB=90°,
∴∠CQA+∠BCN=∠CQA+∠CAM,
∴∠BCN=∠CAM,
在△BCN和△CAM中
∴△BCN≌△CAM,
∴AM=CN.
科目:初中数学 来源: 题型:
【题目】如图,锐角中,,若想找一点P,使得与互补,甲、乙、丙三人作法分别如下:
甲:以B为圆心,AB长为半径画弧交AC于P点,则P即为所求;
乙:分别以B,C为圆心,AB,AC长为半径画弧交于P点,则P即为所求;
丙:作BC的垂直平分线和的平分线,两线交于P点,则P即为所求.
对于甲、乙、丙三人的作法,下列叙述正确的是
A. 三人皆正确B. 甲、丙正确,乙错误
C. 甲正确,乙、丙错误D. 甲错误,乙、丙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。点P在线段AB上以每秒2个单位的速度由点A向点B运动,同时,点Q在线段BD上由B点向点D运动。它们的运动时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图2,将图1中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变。设点Q的运动速度为每秒x个单位,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=AC=8,∠BAC=90,直线l与以AB为直径的⊙O相切于点B,点D是直线l上任意一动点,连结DA交⊙O点E.
(1)当点D在AB上方且BD=6时,求AE的长;
(2)当CE恰好与⊙O相切时,求BD的长为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值,对于任意正实数a、b,可作如下变形a+b==-2+2=+2,又∵≥0,∴ +2≥0+ 2,即a+b ≥2.
(1)根据上述内容,回答下列问题:在a+b≥2(a、b均为正实数)中,若ab为定值p,则a+b≥ 2,当且仅当a、b满足________时,a+b有最小值2.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a ,DB=2b, 试根据图形验证a+b≥2成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D.CD=3,则BC的长为( )
A. 6 B. 9 C. 6 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:DF=CF.
(2)若∠AOB=60,请你探究OE,EF之间有什么数量关系?并证明你的结论。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com