【题目】阅读下面的材料并解答后面的问题:
(阅读)
小亮:你能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?
小华:能.求解过程如下:
因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7.
而(x+22)≥0,所以x2+4x﹣3的最小值是﹣7.
(1)小华的求解过程正确吗?
(2)你能否求出x2﹣5x+4的最小值?如果能,写出你的求解过程.
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
(1)求证:DE是⊙O的切线;
(2)求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某茶叶公司经销一种茶叶,每千克成本为元,市场调查发现在一段时间内,销量(千克)随销售单价(元/千克)的变化而变化,具有关系为:,物价部门规定每千克的利润不得超过元.设这种茶叶在这段时间内的销售利润(元),解答下列问题:
求与的关系式;
当取何值时,的值最大?并求出最大值;
当销售利润的值最大时,销售额也是最大吗?判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个关于的代数式,若存在一个系数为正数关于的单项式,使 的结果是所有系数均为整数的整式,则称单项式为代数式的“整系单项式” ,例如:
当 时,由于 ,故是的整系单项式;
当 时,由于 ,故是的整系单项式;
当 时,由于 ,故是的整系单项式;
当 时,由于 ,故是的整系单项式;
显然,当代数式存在整系单项式时,有无数个,现把次数最低,系数最小的整系单项式记为 ,例如: .
阅读以上材料并解决下列问题:
⑴.判断:当 时, 的整系单项式(填“是”或“不是”);
⑵.当 时, = ;
⑶.解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)a3aa2﹣9a2a4
(2)﹣m2(﹣m2)4(﹣m)3
(3)(﹣8)2018×(﹣0.125)2017
(4)(﹣a2b﹣2ab2+)(﹣9a)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD⊥BC于点D,则下列四个结论中:
①线段AD上任意一点到点B的距离与到点C的距离相等;
②线段AD上任意一点到AB的距离与到AC的距离相等;
③若点Q是线段AD的三等分点 ,则△ACQ的面积是△ABC面积的;
④若,则;
正确结论的序号是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与X轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0),OC=3OB.
(1)求抛物线对应的函数解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ΔABC中,AD是高,AE、BF是角平分线,它们相交与点O,∠BAC=50°,∠C=70°,则∠DAC的度数为__________,∠BOA的度数为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com