精英家教网 > 初中数学 > 题目详情

【题目】完成下面的证明

如图,端点为P的两条射线分别交两直线l1、l2A、C、B、D四点,已知∠PBA=PDC,l=PCD,求证:∠2+3=180°.

证明:∵∠PBA=PDC(   

   (同位角相等,两直线平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代换)

∴PC//BF(内错角相等,两直线平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代换)

【答案】已知;l1∥l2;两直线平行,同位角相等;已知;∠1=∠PAB;两直线平行,内错角相等;邻补角定义

【解析】

由∠PBA=PDC,根据同位角相等,两直线平行可得l1l2PAB=PCD,由∠1=PCD根据等量代换可得∠1=PAB,继而可得PC//BF,从而可得∠AFB=2,根据邻补角定义可得∠AFB+3=180°,利用等量代换即可得∠2+3=180°.

∵∠PBA=PDC( 已知)

l1l2(同位角相等,两直线平行)

∴∠PAB=PCD( 两直线平行,同位角相等)

∵∠1=PCD( 已知)

∴∠1=PAB(等量代换)

PC//BF(内错角相等,两直线平行),

∴∠AFB=2(两直线平行,内错角相等)

∵∠AFB+3=180°( 邻补角定义)

∴∠2+3=180°(等量代换)

故答案为:已知;l1l2;两直线平行,同位角相等;已知;∠1=PAB;两直线平行,内错角相等;邻补角定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABCD中,ECD边上一点,

(1)将ADE绕点A按顺时针方向旋转,使AD、AB重合,得到ABF,如图1所示.观察可知:与DE相等的线段是   AFB=   

(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;

(3)在(2)题中,连接BD分别交AP、AQM、N,你还能用旋转的思想说明BM2+DN2=MN2吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化简:|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线AB∥CD

1)如图1,直接写出∠ABE∠CDE∠BED之间的数量关系是   

2)如图2BFDF分别平分∠ABE∠CDE,那么∠BFD∠BED有怎样的数量关系?请说明理由.

3)如图3,点E在直线BD的右侧,BFDF仍平分∠ABE∠CDE,请直接写出∠BFD∠BED的数量关系   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】做如下操作:在等腰三角形ABC中,AB= ACAD平分BAC,交BC于点D.ABD作关于直线AD的轴对称变换,所得的象与ACD重合.

对于下列结论:在同一个三角形中,等角对等边;在同一个三角形中,等边对等角;

等腰三角形的顶角平分线、底边上的中线和高互相重合.

上述操作可得出的是 (将正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某绿色无公害蔬菜基地有甲、乙两种植户,他们们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:

种植户

种植A类蔬菜面积(单位:亩)

种植B类蔬菜面积(单位:亩)

总收入(单位:元)

1

3

13500

2

2

13000

说明:不同种植户种植的同类蔬菜每亩平均收入相等

(1)求A、B两类蔬菜每亩平均收入各是多少元?

(2)今年甲、乙两种植户联合种植,计划合租50亩地用来种植A、B两类蔬菜,为了使总收入不低于16400元,问联合种植最多可以种植A类蔬菜多少亩?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,取点D与点E,使得AD=AE,BAE=CAD,连结BD与CE交于点O.求证:

(1)ABD≌△ACE

(2)OB=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两组数据:3,m,2n,5与m,6,n的平均数都是6,若将这两组数据合并为一组数据,求这组新数据的中位数、众数、方差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).
(1)求抛物线的解析式;
(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,
①试说明EF是圆的直径;
②判断△AEF的形状,并说明理由.

查看答案和解析>>

同步练习册答案