精英家教网 > 初中数学 > 题目详情

【题目】有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化简:|a+b|+|a-c|-|b|+|b-c|.

【答案】(1)<;=;>;<(2)a-b(3)a

【解析】

(1)根据数轴,判断出的取值范围,进而求解;

(2)根据绝对值的性质,去绝对值号,合并同类项即可;

(3)根据绝对值的性质,去绝对值号,合并同类项即可.

(1)

故答案为<;=;>;<

(2)

故答案为a-b

(3)原式=|0|+(a-c)+b-(b-c)=0+a-c+b-b+c=a.

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读思考

我们知道,在数轴上|a|表示数a所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q两点表示的数分别是﹣1和2,那么P,Q两点之间的距离就是 PQ=2﹣(﹣1)=3.

启发应用

如图,点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0

(1)求线段AB的长;

(2)如图,点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解,

①求线段BC的长;

②在数轴上是否存在点P使PA+PB=BC?若存在,直接写出点P对应的数:若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD平分∠ABC. 请补全图形后,依条件完成解答.

(1)在直线BC下方画∠CBE,使∠CBE与∠ABC互补;

(2)在射线BE上任取一点F,过点F画直线FGBDBC于点G;

(3)判断∠BFG与∠BGF的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF ②△AED为等腰三角形

③BE+DC>DE④BE2+DC2=DE2,其中正确的有( )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.

(1)A,B两点间的距离是________.

(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.

(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?

(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一列数,第一个数为x1=1,第二个数为x2=3,从第三个数开始依次为x3,x4,…,xn,….从第二个数开始,每个数是左右相邻两个数和的一半,如x2,x3.

(1)求x3,x4,x5的值,并写出计算过程;

(2)根据(1)的结果,推测x9等于多少;

(3)探索这一列数的规律,猜想第k(k为正整数)个数xk等于多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠ACB=90°,BC=4,如图1,点P从C出发向点B运动,点R是射线PB上一点,PR=3CP,过点R作QR⊥BC,且QR=aCP,连接PQ,当P点到达B点时停止运动.设CP=x,△ABC与△PQR重合部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤<x≤m,m<x≤n时,函数的解析式不同).
(1)a的值为;
(2)求出S关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明

如图,端点为P的两条射线分别交两直线l1、l2A、C、B、D四点,已知∠PBA=PDC,l=PCD,求证:∠2+3=180°.

证明:∵∠PBA=PDC(   

   (同位角相等,两直线平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代换)

∴PC//BF(内错角相等,两直线平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,矩形ABCD中,BD=5cmBC=4cmE是边AD上一点,且BE = EDP是对角线上任意一点,PFBEPGAD,垂足分别为FG.PF + PG的长为(.

A. 2.5 cm B. 2.8 cm C. 3 cm D. 3.5 cm

查看答案和解析>>

同步练习册答案