【题目】如图,已知BC是△ABD的角平分线,BC=DC,∠A=∠E=30°,∠D=50°.
(1)写出AB=DE的理由;
(2)求∠BCE的度数.
【答案】(1)证明见解析(2)20°
【解析】
由三角形内角和定理可得∠DBA=100°,由BC是∠DBA的角平分线可得∠ABC=50°,即可证明∠ABC=∠D,通过AAS可证明△ABC≌△EDC,即可得AB=DE;(2)由∠DBC=50°,∠E=30°,根据三角形外角性质即可求出∠BCE的度数.
(1)∵∠A=30°,∠D=50°,
∴∠DBA=180°-30°-50°=100°,
∵BC是∠DBA的角平分线,
∴∠DBC=∠ABC=50°,
∴∠ABC=∠D,
∵BC=CD,∠A=∠E,∠ABC=∠D,
∴△ABC≌△EDC(AAS),
∴AB=DE.
(2)∵∠DBC=50°,∠E=30°,
∴∠BCE=∠DBC-∠E=50°-30°=20°.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作
y轴的平行线,与直线AC交于点G(点G在点F的上方).若,
求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市居民用电的电价实行阶梯收费,收费标准如下表:
一户居民每月用电量x(单位:度) | 电费价格(单位:元/度) |
0<x≤200 | 0.48 |
200<x≤400 | 0.53 |
x>400 | 0.78 |
七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是( )
A. 100B. 396C. 397D. 400
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”,如图1,平行四边形MNPQ的一边PQ作左右平移,图2反映它的边NP的长度(cm)随时间t(s)变化而变化的情况,请解答下列问题:
(1)在这个变化过程中,自变量是______,因变量是______;
(2)观察图2,PQ向左平移前,边NP的长度是______cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;
(3)填写下表,并根据表中呈现的规律写出8至14秒间1与t的关系式.
PQ边的运动时间/s | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
NP的长度/cm | 18 | 15 | 12 | ______ | 6 | 3 | 0 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一,凡百钱买鸡百只,问鸡翁、母、雏各几何.”
译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?结合你学过的知识,解决下列问题:
(1)若设公鸡有x只,母鸡有y只,
①则小鸡有______只,买小鸡一共花费______文钱;(用含x,y的式子表示)
②根据题意列出一个含有x,y的方程:______;
(2)若对“百鸡问题”增加一个条件:公鸡数量是母鸡数量的3倍,求此时公鸡、母鸡、小鸡各有多少只?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某飞机模型的机翼形状如图所示,其中AB∥DC,∠BAE=90°,根据图中的数据求CD的长?(精确到1cm)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个8×10的网格,每个小正方形的顶点叫格点,每个小正方形的边长均为1,△ABC的顶点均在格点上.
(1)画出△ABC关于直线OM对称的图形△.
(2)画出△ABC关于点O的中心对称图形 △.
(3)△与△组成的图形__________ 轴对称图形. (填“是”或“不是”)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com