精英家教网 > 初中数学 > 题目详情

【题目】如图所示,小亮家在点O处,其所在学校的校园为矩形ABCD,东西长AD1000米,南北长AB600米.学校的南正门在AD的中点E处,B为学校的西北角门.小亮从家到学校可以走马路,路线OME(∠M90°);也可以走沿河观光路,路线OB.小亮在D处测得O位于北偏东30°,在B处测得O位于北偏东60°小亮从家到学校的两条路线中,长路线比短路线多_____米.(结果保留根号)

【答案】

【解析】

如图,由题意得,∠OBF30°DOM30°FMAB600,设DMCFx,得到BF1000+x,解直角三角形即可得到结论.

解:如图,由题意得,∠OBF30°DOM30°FMAB600

DMCFx

BF1000+x

RtBOF中,∵∠OBF30°

OFBFOB

RtODM中,DMx

OMx

OFOMFMx600

x600

解得:x500+300

OF500+300

BO2OF1000+600

∴路线O→M→E的长度=500+x+x500+500+300+500+9001900+800

∴长路线比短路线多(1300200)米,

故答案为:1300200

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,菱形ABCD的顶点AB轴上,点A在点B的左侧,点D轴的正半轴上,,点A的坐标为.

(1)D点的坐标.

(2)求直线AC的函数关系式.

(3)动点P从点A出发,以每秒1个单位长度的速度,按照的顺序在菱形的边上匀速运动一周,设运动时间为.为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上一点,D的中点,EOD延长线上一点,且∠CAE2CACBD交于点H,与OE交于点F

1)求证:AE是⊙O的切线;

2)若DH9tanC,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCADE都是等腰直角三角形,∠ACB=ADE=90°,点FBE的中点,连接CF,DF.

(1)如图1,当点DAB上,点EAC上时

①证明:BFC是等腰三角形;

②请判断线段CF,DF的关系?并说明理由;

(2)如图2,将图1中的ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某竹制品加工厂根据市场调研结果,对该厂生产的一种新型竹制品玩具未来两年的销售进行预测,并建立如下模型:设第t个月,竹制品销售量为P(单位:箱),Pt之间存在如图所示函数关系,其图象是线段AB(不含点A)和线段BC的组合.设第t个月销售每箱的毛利润为Q(百元),且Qt满足如下关系Q=2t+80≤t≤24).

1)求Pt的函数关系式(6≤t≤24).

2)该厂在第几个月能够获得最大毛利润?最大毛利润是多少?

3)经调查发现,当月毛利润不低于40000且不高于43200元时,该月产品原材料供给和市场售最和谐,此时称这个月为和谐月,那么,在未来两年中第几个月为和谐月?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.

(1)该项绿化工程原计划每天完成多少米2

(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某店因为经营不善欠下68400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量(件)与销售价(元件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).

1)求日销售量(件)与销售价(元/件)之间的函数关系式;

2)若该店暂不考虑偿还债务,当某天的销售价为48/件时,当天正好收支平衡(收入=支出),求该店员工的人数;

3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O直径,CD为O上不同于A、B的两点ABD=2BAC,连接CD.过点C作CEDB,垂足为E,直线AB与CE相交于F点.

(1)求证:CFO的切线

(2)当BF=5,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海面上甲、乙两船分别从A,B两处同时出发,由西向东行驶,甲船的速度为24n mile/h,乙船的速度为15n mile/h,出发时,测得乙船在甲船北偏东50°方向,且AB=10nmile,经过20分钟后,甲、乙两船分别到达C,D两处.

(参考值:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

(1)求两条航线间的距离;

(2)若两船保持原来的速度和航向,还需要多少时间才能使两船的距离最短?(精确到0.01)

查看答案和解析>>

同步练习册答案