精英家教网 > 初中数学 > 题目详情

已知关于x的一元二次方程mx2﹣(m+2)x+2=0.

(1)证明:不论m为何值时,方程总有实数根;

(2)m为何整数时,方程有两个不相等的正整数根.


解:(1)△=(m+2)2﹣8m

=m2﹣4m+4

=(m﹣2)2

∵不论m为何值时,(m﹣2)2≥0,

∴△≥0,

∴方程总有实数根;

(2)解方程得,x=

x1=,x2=1,

∵方程有两个不相等的正整数根,

∴m=1或2,m=2不合题意,

∴m=1.

练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年江苏省滨海县八年级上学期期末考试数学试卷(解析版) 题型:解答题

(本题10分)如图,△ABC中,AB=AC,D、E、F分别在BC、AB、AC上,且BE=CD,BD=CF.

(1)求证:DE=DF;

(2)当∠A的度数为多少时,△DEF是等边三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径

如图,△ABC中,∠ABC=90º,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD,若∠DBC=60º,∠ACB=15º,BD=,则菱形ACEF的面积为         

    

查看答案和解析>>

科目:初中数学 来源: 题型:


如图是二次函数y=ax2+bx+c的图象,下列结论:

①二次三项式ax2+bx+c的最大值为4;

②4a+2b+c<0;

③一元二次方程ax2+bx+c=1的两根之和为﹣1;

④使y≤3成立的x的取值范围是x≥0.

其中正确的个数有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:


古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为an,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).

(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;

(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.

①试求△PAD的面积的最大值;

②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是(  )

 

A.

∠AED=∠B

B.

∠ADE=∠C

C.

=

D.

=

查看答案和解析>>

科目:初中数学 来源: 题型:


问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

【发现证明】

小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】

如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足   关系时,仍有EF=BE+FD.

【探究应用】

如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是(  )

 

A.

B.

C.

D.

 

查看答案和解析>>

同步练习册答案