【题目】如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形有( )
A.3个
B.4个
C.5个
D.6个
【答案】D
【解析】解:∵∠B=∠C=36°,∠ADE=∠AED=72°,∴△ABC和△ADE是等腰三角形,
∵∠B=36°,∠ADE=72°,
∴∠BAD=36°,
∴△ABD是等腰三角形,同理△AEC是等腰三角形,
∵∠ADE=∠AED=72°,
∴∠DAE=36°,
∴∠CAD=36°+36°=72°,
∴∠CAD=∠CDA=72°,
∴△ADC是等腰三角形,
同理:△ABE是等腰三角形,
综上所述:等腰三角形有6个,
故应选:D 。
根据有两个内角相等的三角形是等腰三角形得出△ABC和△ADE是等腰三角形;根据三角行的外角定理得出∠BAD=36°=∠B,从而得出△ABD是等腰三角形,同理△AEC是等腰三角形;根据三角形的内角和得出∠DAE=36°,根据角的和差得出∠CAD=36°+36°=72°,进而得出∠CAD=∠CDA=72°,故△ADC是等腰三角形,同理:△ABE是等腰三角形;从而得出结论。
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:
①f(x,y)=(x+2,y),
②g(x,y)=(﹣x,﹣y),例如按照以上变换有:f(1,1)=(3,1);g(f(1,1))=g(3,1)=(﹣3,﹣1).
则f(g(2,5))=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
⑴ 作出与△ABC关于y轴对称△A1B1C1 , 并写出三个顶点的坐标为:A1(),B1(),C1();
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2;
②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.
下面是他的探究过程,请将(2)、(3)、(4)补充完整:
(1)将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>;
当x<0时,原不等式可以转化为x2+4x﹣1<;
(2)构造函数,画出图象
设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.
双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(3)确定两个函数图象公共点的横坐标
观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为 ;
(4)借助图象,写出解集
结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com