【题目】已知:点D是△ABC中AC的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F.
(1)求证:△GAE∽△GBF;
(2)求证:AE=CF;
(3)若BG:GA=3:1,BC=8,求AE的长.
科目:初中数学 来源: 题型:
【题目】山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是元,经调查发现,当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶(售价不高于元)
(1)售价为多少时可以使每天的利润最大?最大利润是多少?
(2)要使每天的利润不低于元,每瓶竹叶青酒的售价应该控制在什么范围内?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务.
“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现在的数学语言表达是:如图,为的直径,弦,垂足为,寸,尺,其中1尺寸,求出直径的长.
解题过程如下:
连接,设寸,则寸.
∵尺,∴寸.
在中,,即,解得,
∴寸.
任务:
(1)上述解题过程运用了 定理和 定理.
(2)若原题改为已知寸,尺,请根据上述解题思路,求直径的长.
(3)若继续往下锯,当锯到时,弦所对圆周角的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=13,BC=15,CA=14,则tan∠EDF的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2-3ax-2交x轴于A、B(A左B右)两点,交y轴于点C,过C作CD∥x轴,交抛物线于点D,E(-2,3)在抛物线上.
(1)求抛物线的解析式;
(2)P为第一象限抛物线上一点,过点P作PF⊥CD,垂足为F,连接PE交y轴于G,求证:FG∥DE;
(3)如图2,在(2)的条件下,过点F作FM⊥PE于M.若∠OFM=45°,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是( )
A.a=20
B.b=4
C.若工人甲一天获得薪金180元,则他共生产50件
D.若工人乙一天生产m(件),则他获得薪金4m元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,O是边AC上的点,以OC为半径的圆分别交边BC、AC于点D、E,过点D作DF⊥AB于点F.
(1)求证:直线DF是⊙O的切线;
(2)若OC=1,∠A=45°,求劣弧DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列网格由小正方形组成,点都在正方形网格的格点上.
(1)在图1中画出一个以线段为边,且与面积相等但不全等的格点三角形;
(2)在图2和图3中分别画出一个以线段为边,且与相似(但不全等)的格点三角形,并写出所画三角形与的相似比.(相同的相似比算一种)
(1)
(2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com