精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/S的速度由点A沿AC方向在AC上移动,设移动时间为t(单位:s).
(1)当t为何值时,⊙P与AB相切;
(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E.求当t为何值时,四边形PDBE为平行四边形.

解:(1)∵过P作PH⊥AB于H,
又∵⊙P与AB相切,
∴PH=1,
∴∠AHP=∠C=90°,∠A=∠A,
∴△APH∽△ABC,…

∵△ABC中,∠C=90°,AC=4,BC=3,
∴AB==5,

∴AP=
∴当t=时,⊙P与AB相切;…

(2)∵PD⊥AC,∠C=90°,
∴PD∥BE,
∴当PE∥AB时,四边形PDBE为平行四边形.
∴△CPE∽△CAB,


∴CP=
∴AP=AC-CP=
∴当t=时,四边形PDBE为平行四边形.…


分析:(1)首先过P作PH⊥AB于H,由⊙P与AB相切,可得PH=1,易证得△APH∽△ABC,根据相似三角形的对应边成比例,可得,继而求得AP的长;即可得当t为何值时,⊙P与AB相切;
(2)由PD⊥AC,∠C=90°,可证得PD∥BC,继而可得当PE∥AB时,四边形PDBE为平行四边形,则可得△CPE∽△CAB,然后由相似三角形的对应边成比例,求得CP的长,继而求得答案.
点评:此题考查了切线的性质、平行四边形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案