精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣1),△ABC的面积为

(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

【答案】
(1)

解:∵OC=1,

∴q=﹣1,

∵△ABC的面积为

OC×AB=

解得AB=

设A(a,0),B(b,0),

则a、b是一元二次方程x2+px﹣1=0两个根,

∴a+b=﹣p,ab=﹣1,

∴AB=b﹣a= =

解得p=

又∵p<0,

∴p=

所以解析式为:y=x2 x﹣1;


(2)

解:如图1所示,

令y=0,

解方程得x2 x﹣1=0,

得x1=﹣ ,x2=2,

所以A( ,0),B(2,0),

在直角三角形AOC中可求得AC= ,同样可求得BC=

显然AC2+BC2=AB2,得三角形ABC是直角三角形.AB为斜边,

所以外接圆的直径为AB=

所以


(3)

存在,AC⊥BC,

如图2所示,

①若以AC为底边,则BD∥AC,易求AC的解析式为y=﹣2x﹣1,

可设BD的解析式为y=﹣2x+b,

把B(2,0)代入得BD解析式为y=﹣2x+4,

解方程组

得D( ,9)

②若以BC为底边,则BC∥AD,易求BC的解析式为y=0.5x﹣1,

可设AD的解析式为y=0.5x+b,把A( ,0)代入

得AD解析式为y=0.5x+0.25,

解方程组

得D(

综上,所以存在两点:( ,9)或( ).


【解析】(1)由△ABC的面积为 ,可得AB×OC= ,又二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣1)可求得该二次函数的关系式;(2)根据直线与圆的位置的位置关系确定m的取值范围.(3)四边形ABCD为直角梯形,要分类讨论,即究竟那条边为底.可以分别以AC、BC为底进行讨论.
【考点精析】解答此题的关键在于理解三角形的外接圆与外心的相关知识,掌握过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.
(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、 L/km.
(2)求线段AB所表示的y与x之间的函数表达式.
(3)速度是多少时,该汽车的耗油量最低?最低是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y= x﹣ 与x,y轴分别交于点A,B,与反比例函数y= (k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.
(1)求点A的坐标.
(2)若AE=AC. ①求k的值.
②试判断点E与点D是否关于原点O成中心对称?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y= x+1与x轴交于点A,且与双曲线y= 的一个交点为B( ,m).
(1)求点A的坐标和双曲线y= 的表达式;
(2)若BC∥y轴,且点C到直线y= x+1的距离为2,求点C的纵坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC= ,CD=3,则AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )
A.|﹣2|=﹣2
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D、E、F分别为△ABC各边中点,下列说法正确的是(  )

A.DE=DF
B.EF=?AB
C.S△ABD=S△ACD
D.AD平分∠BAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)

查看答案和解析>>

同步练习册答案