17£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÎª×ø±êÔ­µã£¬Ö±Ïßy=kx+3ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãC£¬¹ýµãCµÄÅ×ÎïÏß$y=\frac{1}{2}{x^2}+bx+c$ÓëÖ±ÏßAC½»ÓÚÁíÒ»µãB£¬µãB×ø±êΪ£¨$\frac{7}{2}$£¬$\frac{45}{8}$£©£®
£¨1£©ÇóÖ±ÏߺÍÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãPÊÇÉäÏßCBÉϵÄÒ»¸ö¶¯µã£¬¹ýµãP×÷Ö±ÏßPQ¡ÍxÖᣬ´¹×ãΪµãQ£¬½»Å×ÎïÏßÓÚµãD£¬
¢Ùµ±PD=PCʱ£¬ÇóµãPµÄ×ø±ê£®
¢ÚÔÚxÖáÉϵãQµÄÓÒ²àÈ¡µãM£¬Ê¹MQ=$\frac{3}{2}$£¬ÔÚQPµÄÑÓ³¤ÏßÉÏÈ¡µãN£¬Á¬½ÓPM£¬AN£¬ÒÑÖªtan¡ÏNAQ-tan¡ÏMPQ=$\frac{3}{4}$£¬ÇóÏß¶ÎPNµÄ³¤£®

·ÖÎö £¨1£©ÏÈÀûÓÃy=kx+3È·¶¨Cµã×ø±ê£¬È»ºó°ÑCµãºÍBµã×ø±ê´úÈëy=$\frac{1}{2}$x2+bx+cµÃ¹ØÓÚb¡¢cµÄ·½³Ì×飬Ȼºó½â·½³Ì×éÇó³öb¡¢c¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨2£©¢ÙÏȰÑBµã×ø±ê´úÈëy=kx+3Çó³ökµÃµ½Ö±ÏßABµÄ½âÎöʽΪy=$\frac{3}{4}$x+3£¬Èçͼ1£¬ÀûÓÃÒ»´Îº¯ÊýͼÏóºÍ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¿ÉÉèP£¨t£¬$\frac{3}{4}$t+3£©£¬ÔòD£¨t£¬$\frac{1}{2}$t2-t+3£©£¬ÔÙÓÃt·Ö±ð±íʾ³öPDºÍPC£¬ÔòÀûÓÃPD=PC¿ÉµÃµ½¹ØÓÚtµÄ·½³Ì£¬È»ºóµÃµ½¹ØÓÚtµÄÁ½¸öÒ»Ôª¶þ´Î·½³Ì£¬Ôٽⷽ³ÌÇó³öÂú×ãÌõ¼þµÄtµÄÖµ£¬´Ó¶øµÃµ½Pµã×ø±ê£»
¢ÚÈçͼ2£¬ÏÈÀûÓÃÖ±ÏßABµÄ½âÎöʽȷ¶¨Aµã×ø±ê£¬ÉèP£¨t£¬$\frac{3}{4}$t+3£©£¬Q£¨t£¬0£©£¬Ôò¿ÉÓÃt±íʾPQºÍAQ£¬ÔÙÀûÓÃÈý½Çº¯ÊýµÄ¶¨ÒåµÃ¹ØÓÚtµÄ·½³Ì£¬È»ºó½â·½³Ì¿ÉÇó³öPNµÄ³¤£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=kx+3=3£¬ÔòC£¨0£¬3£©£¬
°ÑC£¨0£¬3£©£¬B£¨$\frac{7}{2}$£¬$\frac{45}{8}$£©´úÈëy=$\frac{1}{2}$x2+bx+cµÃ$\left\{\begin{array}{l}{c=3}\\{\frac{1}{2}¡Á\frac{49}{4}+\frac{7}{2}b+c=\frac{45}{8}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=-1}\\{c=3}\end{array}\right.$
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{2}$x2-x+3£»
£¨2£©¢Ù°ÑB£¨$\frac{7}{2}$£¬$\frac{45}{8}$£©´úÈëy=kx+3µÃ$\frac{7}{2}$k+3=$\frac{45}{8}$£¬½âµÃk=$\frac{3}{4}$£¬
ËùÒÔÖ±ÏßABµÄ½âÎöʽΪy=$\frac{3}{4}$x+3£¬
Èçͼ1£¬ÉèP£¨t£¬$\frac{3}{4}$t+3£©£¬ÔòD£¨t£¬$\frac{1}{2}$t2-t+3£©£¬
ËùÒÔPD=|$\frac{1}{2}$t2-t+3-£¨$\frac{3}{4}$t+3£©|=|$\frac{1}{2}$t2-$\frac{7}{4}$t|£¬
¶øPC=$\sqrt{{t}^{2}+£¨\frac{3}{4}t+3-3£©^{2}}$=$\frac{5}{4}$t£¬
ÒòΪPD=PC£¬
ËùÒÔ|$\frac{1}{2}$t2-$\frac{7}{4}$t|=$\frac{5}{4}$t£¬
µ±$\frac{1}{2}$t2-$\frac{7}{4}$t=$\frac{5}{4}$tʱ£¬½âµÃt1=0£¨ÉáÈ¥£©£¬t2=6£¬´ËʱPµã×ø±êΪ£¨6£¬$\frac{15}{2}$£©£»
µ±$\frac{1}{2}$t2-$\frac{7}{4}$t=-$\frac{5}{4}$tʱ£¬½âµÃt1=0£¨ÉáÈ¥£©£¬t2=1£¬´ËʱPµã×ø±êΪ£¨1£¬$\frac{15}{4}$£©£»
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄPµã×ø±êΪ£¨6£¬$\frac{15}{2}$£©»ò£¨1£¬$\frac{15}{4}$£©£»
¢ÚÈçͼ2£¬µ±y=0ʱ£¬$\frac{3}{4}$x+3=0£¬½âµÃx=-4£¬ÔòA£¨-4£¬0£©£¬
ÉèP£¨t£¬$\frac{3}{4}$t+3£©£¬Q£¨t£¬0£©£¬ÔòPQ=$\frac{3}{4}$t+3£¬AQ=t+4£¬
ÔÚRt¡÷NAQÖУ¬tan¡ÏNAQ=$\frac{NQ}{AQ}$=$\frac{NP+\frac{3}{4}t+3}{t+4}$£¬
ÔÚRt¡÷NMQÖУ¬tan¡ÏMPQ=$\frac{QM}{PQ}$=$\frac{\frac{3}{2}}{\frac{3}{4}t+3}$£¬
¶øtan¡ÏNAQ-tan¡ÏMPQ=$\frac{3}{4}$£¬
ËùÒÔ$\frac{NP+\frac{3}{4}t+3}{t+4}$=$\frac{\frac{3}{2}}{\frac{3}{4}t+3}$£¬
ËùÒÔPN=2£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖʺÍÈñ½ÇÈý½Çº¯ÊýµÄ¶¨Ò壻»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£»»á½âÒ»Ôª¶þ´Î·½³Ì£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®º¯Êýy=$\frac{1}{2x-1}$µÄ¶¨ÒåÓòÊÇx¡Ù$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èç¹ûÒ»¸öËıßÐεÄÁ½Ìõ¶Ô½ÇÏßÏàµÈ£¬ÄÇô³ÆÕâ¸öËıßÐÎΪ¡°µÈ¶Ô½ÇÏßËıßÐΡ±£®Ð´³öÒ»¸öÄãËùѧ¹ýµÄÌØÊâµÄµÈ¶Ô½ÇÏßËıßÐεÄÃû³Æ¾ØÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½â·½³Ì£º$x+2\sqrt{x-3}=6$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®È«Ãñ½¡ÉíºÍÒ½ÁƱ£½¡ÊÇÉç»áÆÕ±é¹Ø×¢µÄÎÊÌ⣬2014Ä꣬ijÉçÇø¹²Í¶Èë30ÍòÔªÓÃÓÚ¹ºÂò½¡ÉíÆ÷²ÄºÍÒ©Æ·£®
£¨1£©Èô2014ÄêÉçÇø¹ºÂò½¡ÉíÆ÷²ÄµÄ·ÑÓò»³¬¹ý×ÜͶÈëµÄ$\frac{2}{3}$£¬ÎÊ2014Äê×îµÍͶÈë¶àÉÙÍòÔª¹ºÂòÒ©Æ·£¿
£¨2£©2015Ä꣬¸ÃÉçÇø¹ºÂò½¡ÉíÆ÷²ÄµÄ·ÑÓñÈÉÏÒ»ÄêÔö¼Ó50%£¬¹ºÂòÒ©Æ·µÄ·ÑÓñÈÉÏÒ»Äê¼õÉÙ$\frac{7}{16}$£¬ÇÒÉçÇøÔÚÕâÁ½·½ÃæµÄ×ÜͶÈëÈÔÓë2014ÄêÏàͬ£®
¢ÙÇó2014ÄêÉçÇø¹ºÂòÒ©Æ·µÄ·ÑÓã»
¢Ú¾Ýͳ¼Æ£¬2014Äê¸ÃÉçÇø»ý¼«½¡ÉíµÄ¼ÒÍ¥´ïµ½200»§£¬ÉçÇøÓÃÓÚÕâЩ¼ÒÍ¥µÄÒ©Æ··ÑÓÃÃ÷ÏÔ¼õÉÙ£¬Ö»Õ¼µ±Ä깺ÂòÒ©Æ·×Ü·ÑÓõÄ$\frac{1}{4}$£¬Óë2014ÄêÏà±È£¬Èç¹û2015ÄêÉçÇøÄÚ½¡Éí¼ÒÍ¥»§ÊýÔö¼ÓµÄ°Ù·Ö±ÈÓëÆ½¾ùÿ»§½¡Éí¼ÒÍ¥µÄÒ©Æ··ÑÓýµµÍµÄ°Ù·Ö±ÈÏàͬ£¬ÄÇô£¬2015Äê¸ÃÉçÇøÓÃÓÚ½¡Éí¼ÒÍ¥µÄÒ©Æ··ÑÓþÍÊǵ±Ä깺Âò½¡ÉíÆ÷²Ä·ÑÓõÄ$\frac{1}{7}$£¬Çó2015Äê¸ÃÉçÇø½¡Éí¼ÒÍ¥µÄ»§Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©ÓëxÖá½»ÓÚµãA£¨-1£¬0£©£¬µãB£¨3£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬¶¥µãΪD£¬Á¬½ÓBC£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°¶¥µãDµÄ×ø±ê£»
£¨2£©Èçͼ1£¬µãE£¬FΪÏß¶ÎBCÉϵÄÁ½¸ö¶¯µã£¬ÇÒ$EF=2\sqrt{2}$£¬¹ýµãE£¬F×÷yÖáµÄƽÐÐÏßEM£¬FN£¬·Ö±ðÓëÅ×ÎïÏß½»ÓÚµãM£¬N£¬Á¬½ÓMN£¬ÉèËıßÐÎEFNMÃæ»ýΪS£¬ÇóSµÄ×î´óÖµºÍ´ËʱµãMµÄ×ø±ê£»
£¨3£©Èçͼ2£¬Á¬½ÓBD£¬µãPΪBDµÄÖе㣬µãQÊÇÏß¶ÎBCÉϵÄÒ»¸ö¶¯µã£¬Á¬½ÓDQ£¬PQ£¬½«¡÷DPQÑØPQ·­Õ۵õ½¡÷D¡äPQ£¬µ±¡÷D¡äPQÓë¡÷BCDÖØµþ²¿·ÖµÄÃæ»ýÊÇ¡÷BDQÃæ»ýµÄ$\frac{1}{4}$ʱ£¬ÇóÏß¶ÎCQµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®£¨1£©½â·½³Ì£º$\frac{x}{x+2}$+$\frac{x+2}{2-x}$=$\frac{8}{x^2-4}$     
£¨2£©Çó²»µÈʽ×é$\left\{\begin{array}{l}{\frac{1}{2}x+1£¼\frac{3}{2}}\\{1-5£¨x+1£©¡Ü6}\end{array}\right.$µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÈçͼÊÇÒ»¸ö¶þ´Îº¯ÊýµÄͼÏ󣬶¥µãÊÇÔ­µãO£¬ÇÒ¹ýµãA£¨2£¬1£©£¬
£¨1£©Çó³ö¶þ´Îº¯ÊýµÄ±í´ïʽ£»
£¨2£©ÎÒÃǰѺᡢ×Ý×ø±ê¶¼ÎªÕûÊýµÄµã³ÆÎªÕûµã£¬ÇëÓÃÕûÊýn±íʾÕâÌõÅ×ÎïÏßÉÏËùÓеÄÕûµã×ø±ê£®
£¨3£©¹ýyÖáµÄÕý°ëÖáÉÏÒ»µãC£¨0£¬a£©×÷AOµÄƽÐÐÏß½»Å×ÎïÏßÓÚµãB£¬
¢ÙÇó³öÖ±ÏßBCµÄº¯Êý±í´ïʽ£¨ÓÃa±íʾ£©£»
¢ÚÈç¹ûµãBÊÇÕûµã£¬ÇóÖ¤£º¡÷OABµÄÃæ»ýÊÇżÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼÊÇÎݼÜÉè¼ÆÍ¼µÄÒ»²¿·Ö£¬ÆäÖСÏA=30¡ã£¬µãDÊÇбÁºABµÄÖе㣬BC¡¢DE´¹Ö±ÓÚºáÁºAC£¬AB=8m£¬ÔòÁ¢ÖùBC£¬DEÒª¶à³¤£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸